Introduction to Graph Complexes

Ben Ward

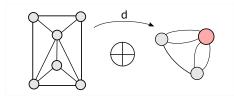
Bowling Green State University

IISER - Kolkata November 2025

An early campus morning...

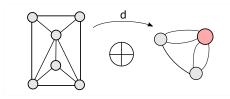
An early campus morning...

Overview



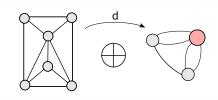
• Use graphs to compute invariants of certain topological spaces.

Overview



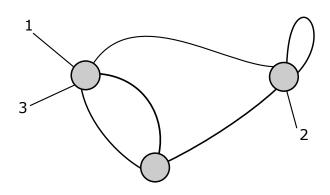
- Use graphs to compute invariants of certain topological spaces.
- There are many variations on this story.

Overview

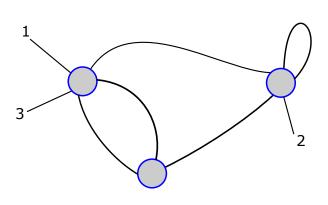


- Use graphs to compute invariants of certain topological spaces.
- There are many variations on this story.
- Studying all the variations together gives more information than studying them individually.

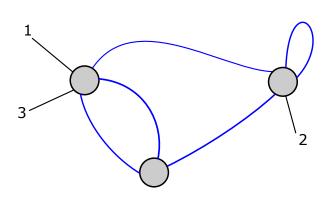
It has...



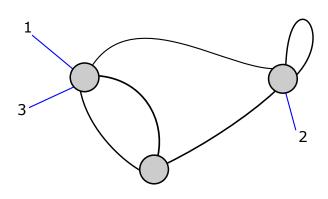
It has... a set of vertices.



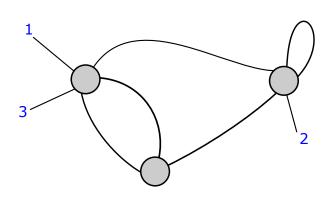
It has...a set of edges.



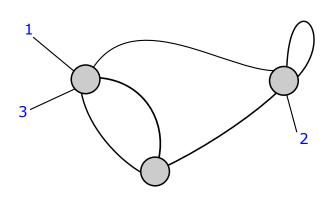
It has...a set of legs,



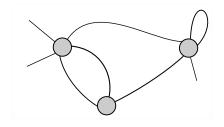
It has...legs which are numbered.



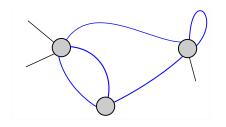
It is connected. It is not planar.



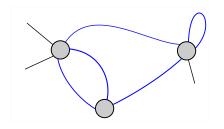
Let γ be a graph.



Let γ be a graph. Let $E(\gamma)$ be its set of edges.

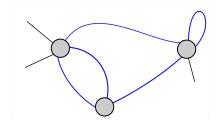


Let γ be a graph. Let $E(\gamma)$ be its set of edges.



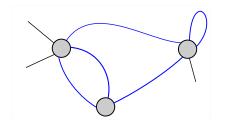
Define $\det(\gamma) = \dots$

Let γ be a graph. Let $E(\gamma)$ be its set of edges.



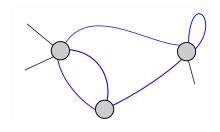
Define $det(\gamma) = span_{\mathbb{Q}}(E(\gamma)) \otimes_{S_n} sgn_n$

Let γ be a graph. Let $E(\gamma)$ be its set of edges.



Define $\det(\gamma) = \operatorname{span}_{\mathbb{Q}}(E(\gamma)) \otimes_{S_n} \operatorname{sgn}_n \cong \mathbb{Q}$.

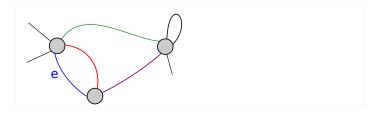
Let γ be a graph. Let $E(\gamma)$ be its set of edges.



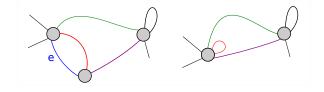
Define $det(\gamma) = span_{\mathbb{Q}}(E(\gamma)) \otimes_{S_n} sgn_n \cong \mathbb{Q}$.

Here is a vector in $det(\gamma)$:

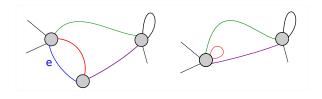
Let γ be a graph. Let e be an edge.



Let γ be a graph. Let e be an edge. Form γ/e by contracting e.

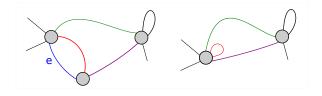


Let γ be a graph. Let e be an edge. Form γ/e by contracting e.



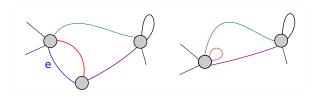
Define d_e : $\det(\gamma) \to \det(\gamma/e)$ by $d_e(w \land e) = w$.

Let γ be a graph. Let e be an edge. Form γ/e by contracting e.



Define $d_e \colon \det(\gamma) \to \det(\gamma/e)$ by $d_e(w \land e) = w$. In particular $d_e d_{e'} = -d_{e'} d_e$

Let γ be a graph. Let e be an edge. Form γ/e by contracting e.



Define d_e : $\det(\gamma) \to \det(\gamma/e)$ by $d_e(w \land e) = w$. In particular

$$d_e d_{e'} = -d_{e'} d_e$$

Hence $d := \sum_e d_e$ satisfies $d^2 = 0$.

Define a chain complex

Define a chain complex

$$\mathsf{GC} = igoplus_{\gamma} ...$$

Define a chain complex

$$\mathsf{GC} = igoplus_{\gamma} \mathit{det}(\gamma)...$$

Define a chain complex

$$\mathsf{GC} = \left(\bigoplus_{\gamma} \mathsf{det}(\gamma)\right)/\mathsf{Iso}$$

7 / 28

Define a chain complex

$$\mathsf{GC} = \left(\bigoplus_{\gamma} \mathsf{det}(\gamma)\right) / \mathsf{Iso} \cong \bigoplus_{[\gamma]} \mathsf{det}(\gamma)_{\mathsf{Aut}(\gamma)}$$

with differential induced by $d = \sum_e d_e$.

Define a chain complex

$$\mathsf{GC} = \left(igoplus_{\gamma} \mathsf{det}(\gamma)
ight)/\mathit{Iso} \cong igoplus_{[\gamma]} \mathsf{det}(\gamma)_{\mathsf{Aut}(\gamma)}$$

with differential induced by $d = \sum_{e} d_{e}$.

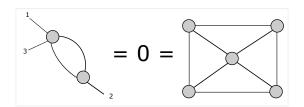
$$\dim(\det(\gamma)_{Aut(\gamma)}) = 0$$
 or 1

Define a chain complex

$$\mathsf{GC} = \left(igoplus_{\gamma} \mathsf{det}(\gamma)
ight)/\mathit{Iso} \cong igoplus_{[\gamma]} \mathsf{det}(\gamma)_{\mathsf{Aut}(\gamma)}$$

with differential induced by $d = \sum_{e} d_{e}$.

$$\dim(\det(\gamma)_{\operatorname{Aut}(\gamma)})=0$$
 or 1

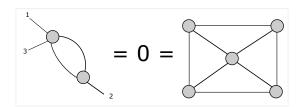


Define a chain complex

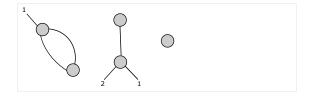
$$\mathsf{GC} = \left(igoplus_{\gamma} \mathsf{det}(\gamma)
ight)/\mathit{Iso} \cong igoplus_{[\gamma]} \mathsf{det}(\gamma)_{\mathsf{Aut}(\gamma)}$$

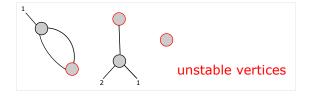
with differential induced by $d = \sum_{e} d_{e}$.

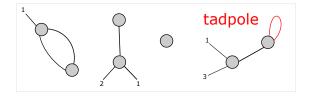
$$\dim(\det(\gamma)_{Aut(\gamma)}) = 0$$
 or 1

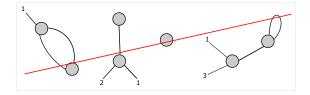


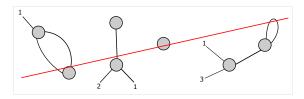
Question: what is the homology of this chain complex?





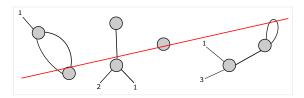






So d preserves n, the number of legs and the genus g := |E| - |V| + 1

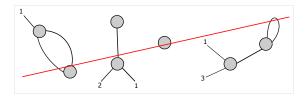
First a few simplifying assumption: graphs are stable and without tadpoles.



So d preserves n, the number of legs and the genus g:=|E|-|V|+1 Hence

$$GC = \bigoplus_{g,n} GC_{g,r}$$

First a few simplifying assumption: graphs are stable and without tadpoles.

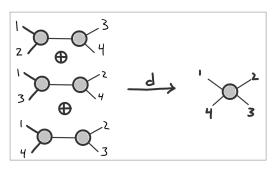


So d preserves n, the number of legs and the genus g:=|E|-|V|+1 Hence

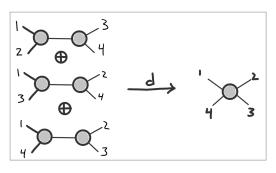
$$\mathsf{GC} = \bigoplus_{g,n} \mathsf{GC}_{g,n}$$

and each $GC_{g,n}$ is finite dimensional.

The chain complex: $GC_{0,4}$

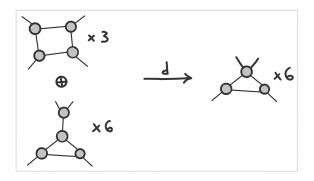


The chain complex: GC_{0.4}

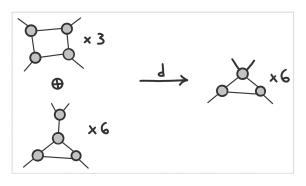


$$H_i(\mathsf{GC}_{0,4}) \cong egin{cases} \mathbb{Q}^2 & ext{if } i=1 \ 0 & ext{else} \end{cases}$$

The chain complex: $GC_{1,4}$

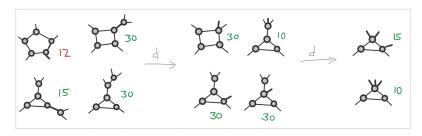


The chain complex: $GC_{1,4}$

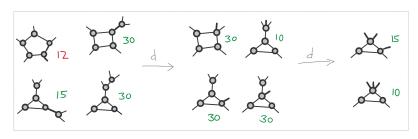


$$H_i(\mathsf{GC}_{1,4}) \cong \begin{cases} \mathbb{Q}^3 & \text{if } i = 4 \\ 0 & \text{else} \end{cases}$$

The chain complex: $GC_{1,5}$



The chain complex: $GC_{1,5}$



$$H_i(\mathsf{GC}_{1,4}) \cong egin{cases} \mathbb{Q}^{12} & \text{if } i = 5 \\ 0 & \text{else} \end{cases}$$

When g = 0 and $n \ge 3$, [Ginzburg-Kapranov '94]

When g = 0 and $n \ge 3$, [Ginzburg-Kapranov '94]

$$\beta_i(\mathsf{GC}_{0,n}) = \begin{cases} (n-2)! & \text{if } i = n-3\\ 0 & \text{else} \end{cases}$$

When g = 0 and $n \ge 3$, [Ginzburg-Kapranov '94]

$$\beta_i(\mathsf{GC}_{0,n}) = \begin{cases} (n-2)! & \text{if } i = n-3\\ 0 & \text{else} \end{cases}$$

When g=1 and $n\geq 3$ [Chan-Galatius-Payne '22]

When g = 0 and $n \ge 3$, [Ginzburg-Kapranov '94]

$$\beta_i(\mathsf{GC}_{0,n}) = \begin{cases} (n-2)! & \text{if } i = n-3\\ 0 & \text{else} \end{cases}$$

When g=1 and $n \ge 3$ [Chan-Galatius-Payne '22]

$$\beta_i(\mathsf{GC}_{1,n}) = \begin{cases} (n-1)!/2 & \text{if } i = n \\ 0 & \text{else} \end{cases}$$

When g = 0 and $n \ge 3$, [Ginzburg-Kapranov '94]

$$\beta_i(\mathsf{GC}_{0,n}) = \begin{cases} (n-2)! & \text{if } i = n-3\\ 0 & \text{else} \end{cases}$$

When g=1 and $n \ge 3$ [Chan-Galatius-Payne '22]

$$\beta_i(\mathsf{GC}_{1,n}) = \begin{cases} (n-1)!/2 & \text{if } i = n \\ 0 & \text{else} \end{cases}$$

When g = 2 and $n \ge 4$ [Chan '22]

$$\chi(\mathsf{GC}_{2,n}) = \pm \frac{n!}{12}$$

When g = 0 and $n \ge 3$, [Ginzburg-Kapranov '94]

$$\beta_i(\mathsf{GC}_{0,n}) = \begin{cases} (n-2)! & \text{if } i = n-3\\ 0 & \text{else} \end{cases}$$

When g=1 and $n \ge 3$ [Chan-Galatius-Payne '22]

$$\beta_i(\mathsf{GC}_{1,n}) = \begin{cases} (n-1)!/2 & \text{if } i = n \\ 0 & \text{else} \end{cases}$$

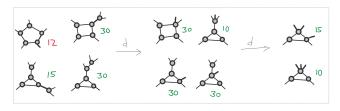
When g=2 and $n\geq 4$ [Chan '22]

$$\chi(\mathsf{GC}_{2,n}) = \pm \frac{n!}{12}$$

• The betti numbers are unknown!

How to prove the previous results?

How to prove the previous results? Recall the cancellation:



How to prove the previous results? Recall the cancellation:

How to prove the previous results? Recall the cancellation:

How to prove the previous results? Recall the cancellation:

Theorem (CGP '22)

Let $g \ge 1$. The subcomplex of $GC_{g,n}$ indexed by graphs with repeated markings is acyclic.

Theorem (Willwacher '15)

$$\bigoplus H^{-2g}(\mathsf{GC}_{g,0}^*) \cong \mathfrak{grt}_1$$

Theorem (Willwacher '15)

$$\bigoplus H^{-2g}(\mathsf{GC}_{g,0}^*) \cong \mathfrak{grt}_1$$

Corollary (Willwacher)

Odd wheels are not boundaries.

Theorem (Willwacher '15)

$$\bigoplus H^{-2g}(\mathsf{GC}_{g,0}^*) \cong \mathfrak{grt}_1$$

Corollary (Willwacher)

Odd wheels are not boundaries.

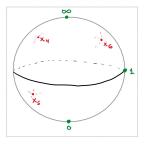
Theorem (Chan-Galatius-Payne '21 & '22)

$$H_*(\mathsf{GC}_{g,n}) \hookrightarrow H^*(\mathcal{M}_{g,n})$$

Theorem (Chan-Galatius-Payne '21 & '22)

$$H_*(GC_{g,n}) \hookrightarrow H^*(\mathcal{M}_{g,n})$$

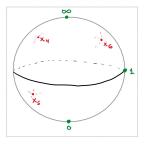
For example $\mathcal{M}_{0,n}:=C(S^2,n)/\sim$ modulo Mobius transformations...



Theorem (Chan-Galatius-Payne '21 & '22)

$$H_*(GC_{g,n}) \hookrightarrow H^*(\mathcal{M}_{g,n})$$

For example $\mathcal{M}_{0,n}:=C(S^2,n)/\sim$ modulo Mobius transformations...

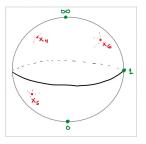


For example $H^{n-3}(\mathcal{M}_{0,n}) \cong H_{n-3}(\mathsf{GC}_{0,n})$.

Theorem (Chan-Galatius-Payne '21 & '22)

$$H_*(GC_{g,n}) \hookrightarrow H^*(\mathcal{M}_{g,n})$$

For example $\mathcal{M}_{0,n}:=\mathcal{C}(S^2,n)/\sim$ modulo Mobius transformations...



For example $H^{n-3}(\mathcal{M}_{0,n}) \cong H_{n-3}(\mathsf{GC}_{0,n})$.

Corollary

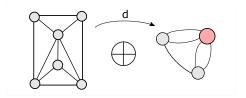
For g odd, $H^{4g-6}(\mathcal{M}_{g,0}) \neq 0$.

Transition

There are many variations on the graph complex construction...

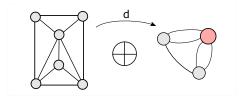
Transition

There are many variations on the graph complex construction...



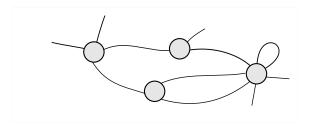
Transition

There are many variations on the graph complex construction...

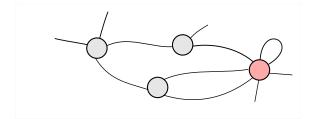


... let me give you one.

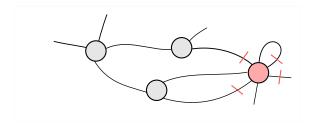
Now, consider graphs with additional decorations:



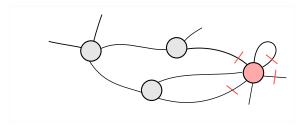
Now, consider graphs with additional decorations: the choice of a vertex.



Now, consider graphs with additional decorations: the choice of a vertex and a subset of the half-edges adjacent to said vertex.

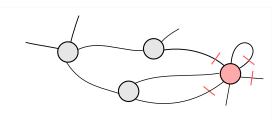


Now, consider graphs with additional decorations: the choice of a vertex and a subset of the half-edges adjacent to said vertex.



A marked graph is type (g, n, r) provided

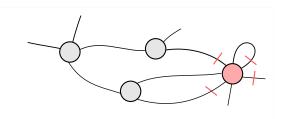
Now, consider graphs with additional decorations:



A marked graph is type (g, n, r) provided

- g = # Edges # Vertices + 2
- n = #legs
- r = #marked half edges

Now, consider graphs with additional decorations:



A marked graph is type (g, n, r) provided

- g = # Edges # Vertices + 2
- n = #legs
- r = #marked half edges

This graph is of type (4,5,4).

Chain complex of marked graphs: MGC

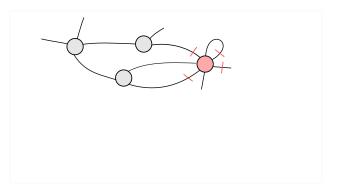
Fix $g, n \ge 0$ with $2g + n \ge 3$. Define

$$\mathsf{MGC}(g,n,r) = \bigoplus det(\gamma)_{\mathsf{Aut}(\gamma)}$$

Fix $g, n \ge 0$ with $2g + n \ge 3$. Define

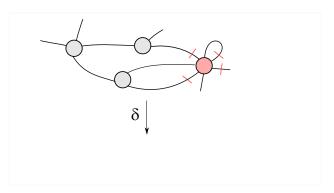
$$\mathsf{MGC}(g,n,r) = \bigoplus \mathsf{det}(\gamma)_{\mathsf{Aut}(\gamma)}$$

taken over isomorphism graphs of type (g, n, s) where $s \ge r$. The differential:



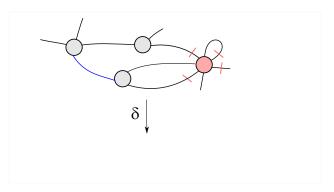
Fix $g, n \ge 0$ with $2g + n \ge 3$. Define

$$\mathsf{MGC}(g,n,r) = \bigoplus det(\gamma)_{\mathsf{Aut}(\gamma)}$$



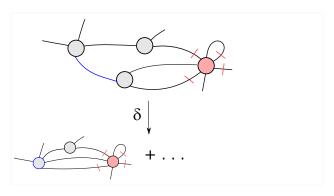
Fix $g, n \ge 0$ with $2g + n \ge 3$. Define

$$\mathsf{MGC}(g,n,r) = \bigoplus det(\gamma)_{\mathsf{Aut}(\gamma)}$$



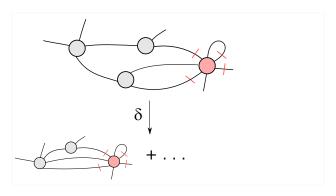
Fix $g, n \ge 0$ with $2g + n \ge 3$. Define

$$\mathsf{MGC}(g,n,r) = \bigoplus det(\gamma)_{\mathsf{Aut}(\gamma)}$$



Fix $g, n \ge 0$ with $2g + n \ge 3$. Define

$$\mathsf{MGC}(g,n,r) = \bigoplus det(\gamma)_{\mathsf{Aut}(\gamma)}$$

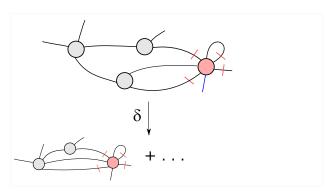


Fix g, n > 0 with 2g + n > 3. Define

$$\mathsf{MGC}(g,n,r) = \bigoplus \mathsf{det}(\gamma)_{\mathsf{Aut}(\gamma)}$$

taken over isomorphism graphs of type (g, n, s) where $s \ge r$.

The differential: sum over edge contractions and ways to add a marking.

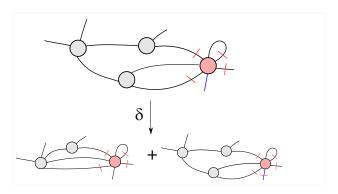


Fix $g, n \ge 0$ with $2g + n \ge 3$. Define

$$\mathsf{MGC}(g,n,r) = \bigoplus \mathsf{det}(\gamma)_{\mathsf{Aut}(\gamma)}$$

taken over isomorphism graphs of type (g, n, s) where $s \ge r$.

The differential: sum over edge contractions and ways to add a marking.

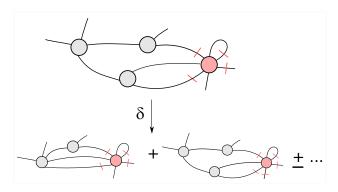


Fix $g, n \ge 0$ with $2g + n \ge 3$. Define

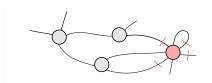
$$\mathsf{MGC}(g,n,r) = \bigoplus det(\gamma)_{\mathsf{Aut}(\gamma)}$$

taken over isomorphism graphs of type (g, n, s) where $s \ge r$.

The differential: sum over edge contractions and ways to add a marking.



Why MGC(g, n, r)?

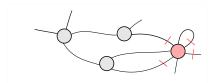


Theorem (Payne-Willwacher '24)

There is an injection

$$H_*(\mathsf{MGC}(g,n,11)) \hookrightarrow H^*(\mathcal{M}_{g,n})$$

Why MGC(g, n, r)?



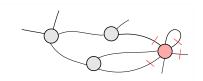
Theorem (Payne-Willwacher '24)

There is an injection

$$H_*(\mathsf{MGC}(g,n,11)) \hookrightarrow H^*(\mathcal{M}_{g,n})$$

Why 11?

Why MGC(g, n, r)?



Theorem (Payne-Willwacher '24)

There is an injection

$$H_*(\mathsf{MGC}(g,n,11)) \hookrightarrow H^*(\mathcal{M}_{g,n})$$

Why 11? Reflects $H^i(\overline{\mathcal{M}}_{g,n}) = 0$ for i = 3, 5, 7, 9.

(ロ) (部) (注) (注) 注 のQ(?)

Case g = 1.

Lemma (W.)

 $H_*(\mathsf{MGC}(1,n,k))$ is concentrated in degree n-k

Lemma (W.)

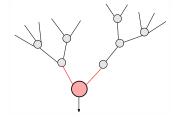
 $H_*(\mathsf{MGC}(1,n,k))$ is concentrated in degree n-k with Betti number $s_{n-1,k}$,

Lemma (W.)

 $H_*(MGC(1, n, k))$ is concentrated in degree n - k with Betti number $s_{n-1,k}$, the number of permutations of n-1 letters with k cycles.

Lemma (W.)

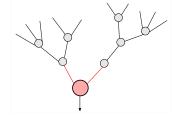
 $H_*(\mathsf{MGC}(1,n,k))$ is concentrated in degree n-k with Betti number $s_{n-1,k}$, the number of permutations of n-1 letters with k cycles.



Lemma (W.)

 $H_*(\mathsf{MGC}(1,n,k))$ is concentrated in degree n-k with Betti number $s_{n-1,k}$, the number of permutations of n-1 letters with k cycles.

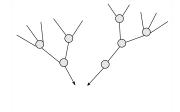
Proof by picture:



① Break the symmetry – fix n and only consider the action of S_{n-1} .

Lemma (W.)

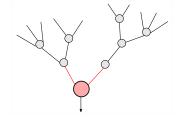
 $H_*(\mathsf{MGC}(1,n,k))$ is concentrated in degree n-k with Betti number $s_{n-1,k}$, the number of permutations of n-1 letters with k cycles.



- **1** Break the symmetry fix n and only consider the action of S_{n-1} .
- 2 Reduce to a quotient complex with v on the "bottom".

Lemma (W.)

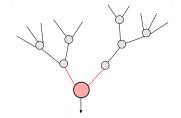
 $H_*(\mathsf{MGC}(1,n,k))$ is concentrated in degree n-k with Betti number $s_{n-1,k}$, the number of permutations of n-1 letters with k cycles.



- **1** Break the symmetry fix n and only consider the action of S_{n-1} .
- **2** Reduce to a quotient complex with \mathbf{v} on the "bottom".
- **3** Use knowledge of $H(GC_{0,n_i})$ to identify the homology of each branch.

Lemma (W.)

 $H_*(MGC(1, n, k))$ is concentrated in degree n - k with Betti number $s_{n-1,k}$, the number of permutations of n-1 letters with k cycles.



- **1** Break the symmetry fix n and only consider the action of S_{n-1} .
- 2 Reduce to a quotient complex with v on the "bottom".
- **3** Use knowledge of $H(GC_{0,n_i})$ to identify the homology of each branch.
- Observe $(n_i 1)!$ is both the homology of a branch and the number of cycles you can build from n_i letters.

Let $C(n, \mathbb{R}^k)$ be the configuration space of n ordered points in \mathbb{R}^k .

Let $C(n, \mathbb{R}^k)$ be the configuration space of n ordered points in \mathbb{R}^k .

Betti numbers are known, and can be computed recursively. E.g.:

$$dim(H^1(C(n,\mathbb{R}^2))) = \binom{n}{2} = s_{n,n-1}$$

Let $C(n, \mathbb{R}^k)$ be the configuration space of n ordered points in \mathbb{R}^k .

Betti numbers are known, and can be computed recursively. E.g.:

$$dim(H^1(C(n,\mathbb{R}^2))) = \binom{n}{2} = s_{n,n-1}$$

Let $C(n, \mathbb{R}^k)$ be the configuration space of n ordered points in \mathbb{R}^k .

Betti numbers are known, and can be computed recursively. E.g.:

$$dim(H^1(C(n,\mathbb{R}^2))) = \binom{n}{2} = s_{n,n-1}$$

Theorem (W)

There is an isomorphism of S_{n+1} -representations:

$$H_*(\mathsf{MGC}(1,n+1,k)) \cong H^{2(n-k)}(C(n,\mathbb{R}^3))$$

Can consider the rational cohomology as an S_n -representation.

$$H^1(C(n,\mathbb{R}^2))\cong$$

Can consider the rational cohomology as an S_n -representation.

$$H^1(C(n,\mathbb{R}^2)) \cong V_n + V_{n-1,1} + V_{n-2,2}$$

Can consider the rational cohomology as an S_n -representation.

$$H^1(C(n,\mathbb{R}^2)) \cong V_n + V_{n-1,1} + V_{n-2,2} = V(0) + V(1) + V(2)$$

Can consider the rational cohomology as an S_n -representation.

$$H^1(C(n,\mathbb{R}^2)) \cong V_n + V_{n-1,1} + V_{n-2,2} = V(0) + V(1) + V(2)$$

for n > 4.

Can consider the rational cohomology as an S_n -representation.

$$H^1(C(n,\mathbb{R}^2)) \cong V_n + V_{n-1,1} + V_{n-2,2} = V(0) + V(1) + V(2)$$

for $n \ge 4$.

Theorem (Church & Farb '13)

Fix i and k. The sequence of S_n representations $H^i(C(n,\mathbb{R}^k))$ exhibit representation stability.

Can consider the rational cohomology as an S_n -representation.

$$H^1(C(n,\mathbb{R}^2)) \cong V_n + V_{n-1,1} + V_{n-2,2} = V(0) + V(1) + V(2)$$

for $n \ge 4$.

Theorem (Church & Farb '13)

Fix i and k. The sequence of S_n representations $H^i(C(n,\mathbb{R}^k))$ exhibit representation stability.

The same thing happens for MGC(g, n + j, k + j):

Can consider the rational cohomology as an S_n -representation.

$$H^1(C(n,\mathbb{R}^2)) \cong V_n + V_{n-1,1} + V_{n-2,2} = V(0) + V(1) + V(2)$$

for $n \ge 4$.

Theorem (Church & Farb '13)

Fix i and k. The sequence of S_n representations $H^i(C(n,\mathbb{R}^k))$ exhibit representation stability.

The same thing happens for MGC(g, n + j, k + j):

Can consider the rational cohomology as an S_n -representation.

$$H^1(C(n,\mathbb{R}^2)) \cong V_n + V_{n-1,1} + V_{n-2,2} = V(0) + V(1) + V(2)$$

for $n \ge 4$.

Theorem (Church & Farb '13)

Fix i and k. The sequence of S_n representations $H^i(C(n,\mathbb{R}^k))$ exhibit representation stability.

The same thing happens for MGC(g, n + j, k + j):

Theorem (Fedah-W.)

For each g and n-k the family MGC(g, n+j, k+j) is representation stable,

Can consider the rational cohomology as an S_n -representation.

$$H^1(C(n,\mathbb{R}^2)) \cong V_n + V_{n-1,1} + V_{n-2,2} = V(0) + V(1) + V(2)$$

for $n \ge 4$.

Theorem (Church & Farb '13)

Fix i and k. The sequence of S_n representations $H^i(C(n,\mathbb{R}^k))$ exhibit representation stability.

The same thing happens for MGC(g, n + j, k + j):

Theorem (Fedah-W.)

For each g and n-k the family MGC(g, n+j, k+j) is representation stable, with a precisely determined sharp bound.

Can consider the rational cohomology as an S_n -representation.

$$H^1(C(n,\mathbb{R}^2)) \cong V_n + V_{n-1,1} + V_{n-2,2} = V(0) + V(1) + V(2)$$

for n > 4.

Theorem (Church & Farb '13)

Fix i and k. The sequence of S_n representations $H^i(C(n,\mathbb{R}^k))$ exhibit representation stability.

The same thing happens for MGC(g, n + j, k + j):

Theorem (Fedah-W.)

For each g and n-k the family MGC(g, n+j, k+j) is representation stable, with a precisely determined sharp bound.

This can be used to establish non-triviality of certain homology classes using Payne and Willwacher's result.

Relation between GC and MGC

GC and MGC aren't just parallel case studies...

Relation between GC and MGC

GC and MGC aren't just parallel case studies... they're closely related.

Relation between GC and MGC

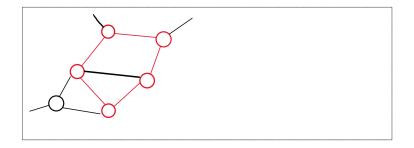
GC and MGC aren't just parallel case studies... they're closely related.

Rough idea: there is a map given by contracting cycles.



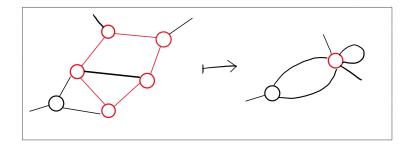
GC and MGC aren't just parallel case studies... they're closely related.

Rough idea: there is a map given by contracting cycles.



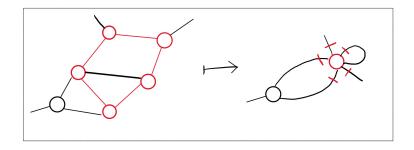
GC and MGC aren't just parallel case studies... they're closely related.

Rough idea: there is a map given by contracting cycles.



GC and MGC aren't just parallel case studies... they're closely related.

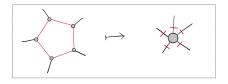
Rough idea: there is a map given by contracting cycles.



Theorem (W)

Cycle contraction gives an isomorphism of graded S_n -modules:

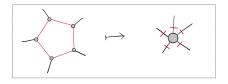
$$H(\mathsf{GC}_{1,n}) \cong \bigoplus_{r \ odd} H(\mathsf{MGC}(1,n,r)).$$



Theorem (W)

Cycle contraction gives an isomorphism of graded S_n -modules:

$$H(\mathsf{GC}_{1,n}) \cong \bigoplus_{r \ odd} H(\mathsf{MGC}(1,n,r)).$$

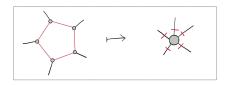


Why Odd?

Theorem (W)

Cycle contraction gives an isomorphism of graded S_n -modules:

$$H(\mathsf{GC}_{1,n}) \cong \bigoplus_{r \ odd} H(\mathsf{MGC}(1,n,r)).$$



Why Odd?

Corollary

$$\operatorname{\mathsf{gr}}_0 H^{\operatorname{c}}_{ullet}(\mathcal{M}_{1,n+1}) \cong \bigoplus_i H_{4i}(\operatorname{C}(n,\mathbb{R}^3))$$

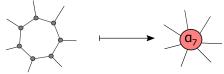
Foreshadowing...

Recall Willwacher used the correspondence with \mathfrak{grt}_1 to construct a family of commutative graph homology classes σ_{2j+1}

Foreshadowing...

Recall Willwacher used the correspondence with \mathfrak{grt}_1 to construct a family of commutative graph homology classes σ_{2j+1}

Compare this to the above isomorphism which involved contraction of odd polygons...



Foreshadowing...

Recall Willwacher used the correspondence with \mathfrak{grt}_1 to construct a family of commutative graph homology classes σ_{2j+1}

Compare this to the above isomorphism which involved contraction of odd polygons...

How could we use this to detect the wheel graph in L(2j + 1, 0)?

The above story when g = 1 can be generalized:

The above story when g = 1 can be generalized:

Theorem

There is a short exact sequence of the form:

$$0 o \mathsf{Ker}(g, n) \hookrightarrow {}^{acyclic}_{complex} \twoheadrightarrow \mathsf{GC}_{g,n} \to 0$$

The above story when g = 1 can be generalized:

Theorem

There is a short exact sequence of the form:

$$0 \to \mathsf{Ker}(g, n) \hookrightarrow {}^{acyclic}_{complex} \twoheadrightarrow \mathsf{GC}_{g,n} \to 0$$

The above story when g = 1 can be generalized:

Theorem

There is a short exact sequence of the form:

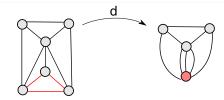
$$0 o \mathsf{Ker}(g, n) \hookrightarrow \overset{acyclic}{complex} \twoheadrightarrow \mathsf{GC}_{g,n} \to 0$$

The above story when g = 1 can be generalized:

Theorem

There is a short exact sequence of the form:

$$0 \to \mathsf{Ker}(g, n) \hookrightarrow {}^{acyclic}_{complex} \twoheadrightarrow \mathsf{GC}_{g,n} \to 0$$

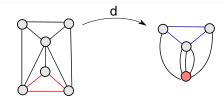


The above story when g = 1 can be generalized:

Theorem

There is a short exact sequence of the form:

$$0 \to \mathsf{Ker}(g, n) \hookrightarrow {}^{acyclic}_{complex} \twoheadrightarrow \mathsf{GC}_{g,n} \to 0$$



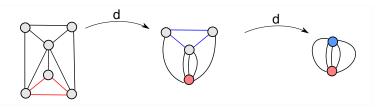
The above story when g = 1 can be generalized:

Theorem

There is a short exact sequence of the form:

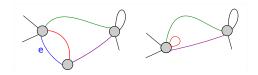
$$0 o \mathsf{Ker}(g, n) \hookrightarrow {}^{acyclic}_{complex} \twoheadrightarrow \mathsf{GC}_{g,n} \to 0$$

What is this acyclic complex?

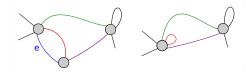


 $d = \sum$ contraction of subgraphs.

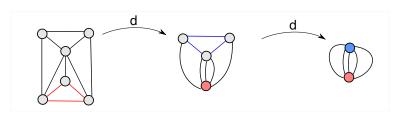
Started with edge contraction:



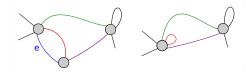
Started with edge contraction:



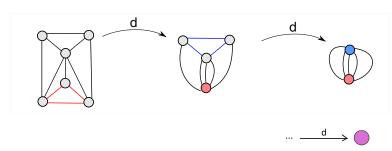
Would like to introduce "higher operations":

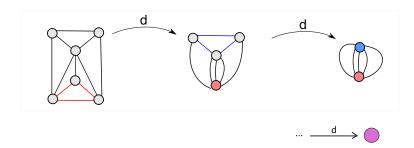


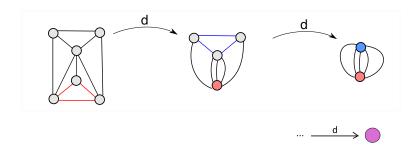
Started with edge contraction:



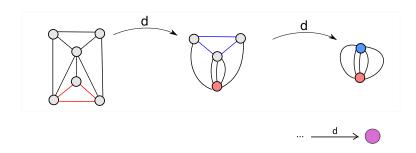
Would like to introduce "higher operations":



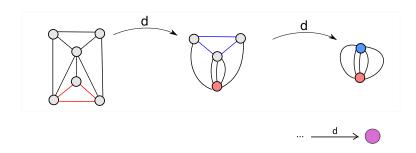




• What information do I need to retain when contracting subgraphs.



- What information do I need to retain when contracting subgraphs.
- Why would variations on the graph complex construction be related?



- What information do I need to retain when contracting subgraphs.
- Why would variations on the graph complex construction be related?
 Higher operations arise from an analogy

Associative Algebras :: Modular operads