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An early campus morning...
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Overview

d

1 Use graphs to compute invariants of certain topological spaces.

2 There are many variations on this story.

3 Studying all the variations together gives more information than
studying them individually.
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Here is a graph
It has...

1

2

3
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Here is a graph
It has... a set of vertices.
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Here is a graph
It has...a set of edges.
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Here is a graph
It has...a set of legs,
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Here is a graph
It has...legs which are numbered.
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Here is a graph
It is connected. It is not planar.
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Vector space associated to a graph

Let γ be a graph.
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Let γ be a graph. Let E (γ) be its set of edges.

Define det(γ) = spanQ(E (γ))⊗Sn sgnn
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Vector space associated to a graph

Let γ be a graph. Let E (γ) be its set of edges.

Define det(γ) = spanQ(E (γ))⊗Sn sgnn
∼= Q.
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Vector space associated to a graph
Let γ be a graph. Let E (γ) be its set of edges.

Define det(γ) = spanQ(E (γ))⊗Sn sgnn
∼= Q.

Here is a vector in det(γ):

^ ^ ^ ^
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Edge Contraction

Let γ be a graph. Let e be an edge.

e
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Edge Contraction

Let γ be a graph. Let e be an edge. Form γ/e by contracting e.

e

Define de : det(γ) → det(γ/e) by de(w ∧ e) = w .
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Edge Contraction
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e

Define de : det(γ) → det(γ/e) by de(w ∧ e) = w .
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Edge Contraction

Let γ be a graph. Let e be an edge. Form γ/e by contracting e.

e

Define de : det(γ) → det(γ/e) by de(w ∧ e) = w .
In particular

dede′ = −de′de

Hence d :=
∑

e de satisfies d2 = 0.
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Graph complex

Define a chain complex
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Graph complex

Define a chain complex

GC =
⊕
γ

...
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Graph complex

Define a chain complex

GC =

(⊕
γ

det(γ)

)
/Iso

∼=
⊕
[γ]

det(γ)Aut(γ)
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Graph complex

Define a chain complex

GC =

(⊕
γ

det(γ)

)
/Iso ∼=

⊕
[γ]

det(γ)Aut(γ)

with differential induced by d =
∑

e de .
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Graph complex

Define a chain complex

GC =
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γ

det(γ)

)
/Iso ∼=

⊕
[γ]

det(γ)Aut(γ)

with differential induced by d =
∑

e de .

dim(det(γ)Aut(γ)) = 0 or 1
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Graph complex

Define a chain complex

GC =

(⊕
γ

det(γ)

)
/Iso ∼=

⊕
[γ]

det(γ)Aut(γ)

with differential induced by d =
∑

e de .

dim(det(γ)Aut(γ)) = 0 or 1

1

2
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Graph complex
Define a chain complex

GC =

(⊕
γ

det(γ)

)
/Iso ∼=

⊕
[γ]

det(γ)Aut(γ)

with differential induced by d =
∑

e de .

dim(det(γ)Aut(γ)) = 0 or 1

1

2

3 = 0 =

Question: what is the homology of this chain complex?
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First a few simplifying assumption: graphs are stable and without
tadpoles.

1

12
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First a few simplifying assumption: graphs are stable and without
tadpoles.
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First a few simplifying assumption: graphs are stable and without
tadpoles.
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12

So d preserves n, the number of legs and the genus g := |E | − |V |+ 1
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First a few simplifying assumption: graphs are stable and without
tadpoles.

1

3

1

12

So d preserves n, the number of legs and the genus g := |E | − |V |+ 1
Hence

GC =
⊕
g ,n

GCg ,n
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First a few simplifying assumption: graphs are stable and without
tadpoles.

1

3

1

12

So d preserves n, the number of legs and the genus g := |E | − |V |+ 1
Hence

GC =
⊕
g ,n

GCg ,n

and each GCg ,n is finite dimensional.
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For example:

The chain complex: GC0,4

Hi (GC0,4) ∼=

{
Q2 if i = 1

0 else
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For example:

The chain complex: GC1,4

Hi (GC1,4) ∼=

{
Q3 if i = 4

0 else
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For example:

The chain complex: GC1,4

Hi (GC1,4) ∼=

{
Q3 if i = 4

0 else
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For example:

The chain complex: GC1,5

Hi (GC1,4) ∼=

{
Q12 if i = 5

0 else
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For example:

The chain complex: GC1,5

Hi (GC1,4) ∼=

{
Q12 if i = 5

0 else
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A few first results

When g = 0 and n ≥ 3, [Ginzburg-Kapranov ’94]

βi (GC0,n) =

{
(n − 2)! if i = n − 3

0 else

When g = 1 and n ≥ 3 [Chan-Galatius-Payne ’22]

βi (GC1,n) =

{
(n − 1)!/2 if i = n

0 else

When g = 2 and n ≥ 4 [Chan ’22]

χ(GC2,n) = ± n!

12

The betti numbers are unknown!
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Collapse of repeated markings

How to prove the previous results?

Recall the cancellation:

Theorem (CGP ’22)

Let g ≥ 1. The subcomplex of GCg ,n indexed by graphs with repeated
markings is acyclic.
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Why study graph homology?

Theorem (Willwacher ’15)⊕
H−2g (GC∗

g ,0)
∼= grt1

Corollary (Willwacher)

Odd wheels are not boundaries.
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Why study graph homology?

Theorem (Chan-Galatius-Payne ’21 & ’22)

H∗(GCg ,n) ↪→ H∗(Mg ,n)

For example M0,n := C (S2, n)/ ∼ modulo Mobius transformations...
For example Hn−3(M0,n) ∼= Hn−3(GC0,n).

Corollary

For g odd, H4g−6(Mg ,0) ̸= 0.
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Transition

There are many variations on the graph complex construction...

d

... let me give you one.
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Here is a marked graph

Now, consider graphs with additional decorations:

Ben Ward Introduction to Graph Complexes Fall 2025 17 / 28



Here is a marked graph

Now, consider graphs with additional decorations:
the choice of a vertex.
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Here is a marked graph

Now, consider graphs with additional decorations:
the choice of a vertex and a subset of the half-edges adjacent to said
vertex.
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Here is a marked graph

Now, consider graphs with additional decorations:
the choice of a vertex and a subset of the half-edges adjacent to said
vertex.

A marked graph is type (g , n, r) provided

g = #Edges−#Vertices + 2

n = #legs

r = #marked half edges

This graph is of type (4, 5, 4).
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Chain complex of marked graphs: MGC

Fix g , n ≥ 0 with 2g + n ≥ 3. Define

MGC(g , n, r) =
⊕

det(γ)Aut(γ)

taken over isomorphism graphs of type (g , n, s) where s ≥ r .
The differential:
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The differential: sum over edge contractions...
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Fix g , n ≥ 0 with 2g + n ≥ 3. Define

MGC(g , n, r) =
⊕

det(γ)Aut(γ)

taken over isomorphism graphs of type (g , n, s) where s ≥ r .
The differential: sum over edge contractions and ways to add a marking.
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Chain complex of marked graphs: MGC
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Chain complex of marked graphs: MGC
Fix g , n ≥ 0 with 2g + n ≥ 3. Define

MGC(g , n, r) =
⊕

det(γ)Aut(γ)

taken over isomorphism graphs of type (g , n, s) where s ≥ r .
The differential: sum over edge contractions and ways to add a marking.

+

�

+ ...
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Why MGC(g , n, r)?

Theorem (Payne-Willwacher ’24)

There is an injection

H∗(MGC(g , n, 11)) ↪→ H∗(Mg ,n)

Why 11? Reflects H i (Mg ,n) = 0 for i = 3, 5, 7, 9.
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Case g = 1.

Lemma (W.)

H∗(MGC(1, n, k)) is concentrated in degree n − k

with Betti number
sn−1,k , the number of permutations of n − 1 letters with k cycles.

Proof by picture:1 Break the symmetry – fix n and only consider the action of Sn−1.

2 Reduce to a quotient complex with v on the “bottom”.

3 Use knowledge of H(GC0,ni ) to identify the homology of each branch.

4 Observe (ni − 1)! is both the homology of a branch and the number
of cycles you can build from ni letters.
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Relation to Configuration Space

Let C (n,Rk) be the configuration space of n ordered points in Rk .

1

2

3

Betti numbers are known, and can be computed recursively. E.g.:

dim(H1(C (n,R2))) =

(
n

2

)
= sn,n−1

Theorem (W)

There is an isomorphism of Sn+1-representations:

H∗(MGC(1, n + 1, k)) ∼= H2(n−k)(C (n,R3))

Ben Ward Introduction to Graph Complexes Fall 2025 21 / 28



Relation to Configuration Space

Let C (n,Rk) be the configuration space of n ordered points in Rk .

1

2

3

Betti numbers are known, and can be computed recursively. E.g.:

dim(H1(C (n,R2))) =

(
n

2

)
= sn,n−1

Theorem (W)

There is an isomorphism of Sn+1-representations:

H∗(MGC(1, n + 1, k)) ∼= H2(n−k)(C (n,R3))

Ben Ward Introduction to Graph Complexes Fall 2025 21 / 28



Relation to Configuration Space

Let C (n,Rk) be the configuration space of n ordered points in Rk .

1

2

3

Betti numbers are known, and can be computed recursively. E.g.:

dim(H1(C (n,R2))) =

(
n

2

)
= sn,n−1

Theorem (W)

There is an isomorphism of Sn+1-representations:

H∗(MGC(1, n + 1, k)) ∼= H2(n−k)(C (n,R3))

Ben Ward Introduction to Graph Complexes Fall 2025 21 / 28



Relation to Configuration Space

Let C (n,Rk) be the configuration space of n ordered points in Rk .

1

2

3

Betti numbers are known, and can be computed recursively. E.g.:

dim(H1(C (n,R2))) =

(
n

2

)
= sn,n−1

Theorem (W)

There is an isomorphism of Sn+1-representations:

H∗(MGC(1, n + 1, k)) ∼= H2(n−k)(C (n,R3))

Ben Ward Introduction to Graph Complexes Fall 2025 21 / 28



Detour – Representation Stability
Can consider the rational cohomology as an Sn-representation.

H1(C (n,R2)) ∼=

Vn + Vn−1,1 + Vn−2,2 = V (0) + V (1) + V (2)

for n ≥ 4.

Theorem (Church & Farb ’13)

Fix i and k. The sequence of Sn representations H i (C (n,Rk)) exhibit
representation stability.

The same thing happens for MGC(g , n + j , k + j):

Theorem (Fedah-W.)

For each g and n − k the family MGC(g , n + j , k + j) is representation
stable, with a precisely determined sharp bound.

This can be used to establish non-triviality of certain homology classes
using Payne and Willwacher’s result.
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Relation between GC and MGC

GC and MGC aren’t just parallel case studies...

they’re closely related.

Rough idea: there is a map given by contracting cycles.
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Relation between GC and MGC

Theorem (W)

Cycle contraction gives an isomorphism of graded Sn-modules:

H(GC1,n) ∼=
⊕
r odd

H(MGC(1, n, r)).

Why Odd?

Corollary

gr0H
c
• (M1,n+1) ∼=

⊕
i

H4i (C (n,R3))
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Foreshadowing...

Recall Willwacher used the correspondence with grt1 to construct a family
of commutative graph homology classes σ2j+1

Compare this to the above isomorphism which involved contraction of odd
polygons...

α7

How could we use this to detect the wheel graph in L(2j + 1, 0)?
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Looking ahead...

The above story when g = 1 can be generalized:

Theorem

There is a short exact sequence of the form:

What is this acyclic complex?
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Looking ahead...
The above story when g = 1 can be generalized:

Theorem

There is a short exact sequence of the form:

0 → Ker(g , n) ↪→ acyclic
complex ↠ GCg ,n → 0

What is this acyclic complex?

d d

d =
∑

contraction of subgraphs.

Ben Ward Introduction to Graph Complexes Fall 2025 26 / 28



Started with edge contraction:

e

Would like to introduce “higher operations”:

d d
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Next time...

d d

What information do I need to retain when contracting subgraphs.

Why would variations on the graph complex construction be related?

Higher operations arise from an analogy

Associative Algebras :: Modular operads
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