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Ben Ward

Introduction to Graph Complexes




Overview

D

@ Use graphs to compute invariants of certain topological spaces.
© There are many variations on this story.

Ben Ward

Introduction to Graph Complexes

N




Overview

D

@ Use graphs to compute invariants of certain topological spaces.
@ There are many variations on this story.

© Studying all the variations together gives more information than
studying them individually.
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Here is a graph
It has...
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Here is a graph
It has...

a set of vertices.
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Here is a graph
It has...a set of edges.
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Here is a graph
It has...a set of legs,
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Here is a graph

It has...legs which are numbered.
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Here is a graph

It is connected. It is not planar.
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Vector space associated to a graph
Let v be a graph.
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Vector space associated to a graph

Let v be a graph. Let E(7) be its set of edges.
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Vector space associated to a graph

Let v be a graph. Let E(7) be its set of edges.

Define det(y) =.
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Vector space associated to a graph

Let v be a graph. Let E(7) be its set of edges.

Define det(y) = spang(E(7)) ®s, sgnn
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Vector space associated to a graph

Let v be a graph. Let E(7) be its set of edges.

Define det(y) = spang(E(7)) ®s, sgnn, = Q
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Vector space associated to a graph

Let v be a graph. Let E(7) be its set of edges.

Define det(y) = spang(E(7)) ®s, sgnn =
Here is a vector in det(~):

~ Q.

\A\A/\A/AO
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Edge Contraction

Let v be a graph. Let e be an edge.
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Let v be a graph. Let e be an edge. Form /e by contracting e.
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Edge Contraction

Let v be a graph. Let e be an edge. Form /e by contracting e.

Define de: det(y) — det(y/e) by de(w A €) = w.
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Edge Contraction

Let v be a graph. Let e be an edge. Form /e by contracting e.

Define d.: det(y) — det(y/e) by de(w A e) = w.
In particular

de de’ = _de’ de
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Edge Contraction

Let v be a graph. Let e be an edge. Form /e by contracting e.

Define de: det(y) — det(y/e) by de(w A €) = w.
In particular

deder = —derde
Hence d := )" d. satisfies d?> = 0.
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Graph complex

Define a chain complex
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Graph complex

Define a chain complex

=P ..

v
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Graph complex

Define a chain complex

GC = @D det(y)...
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Graph complex

Define a chain complex

GC = <@ det(fy)) /lIso
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Graph complex

Define a chain complex
GC = (@ det('y))
g
with differential induced by d =} de.

el
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Graph complex

Define a chain complex

GC = <@ det(fy)>

with differential induced by d =" de.

/ISO = @ det(fy)Aut('y)
[]

dim(det(y) aue(y)) =0 or 1
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Graph complex

Define a chain complex
GC = (@ det(’y))
g
with differential induced by d =} de.

/ISO = @ det(’y)Aut(’y)
]

dim(det(y) aue()) =0 or 1
I
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Graph complex

Define a chain complex

GC = (@ detf(v)) /5o = €D det () aur(

]
with differential induced by d =) de.

dim(det(y) aue(y)) =0 or 1

]

Question: what is the homology of this chain complex?
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tadpoles.

First a few simplifying assumption: graphs are stable and without
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tadpoles.

First a few simplifying assumption: graphs are stable and without

@)

unstable vertices
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tadpoles.

First a few simplifying assumption: graphs are stable and without

tadpole
@)

1
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tadpoles.

First a few simplifying assumption: graphs are stable and without

Ben Ward

So d preserves n, the number of legs and the genus g := |E| — |V|+ 1
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tadpoles.
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First a few simplifying assumption: graphs are stable and without
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So d preserves n, the number of legs and the genus g := |E| — |V|+ 1
GC =D GC,n
g7n
Sy = = D



tadpoles.

A
Hence

2

First a few simplifying assumption: graphs are stable and without

1

So d preserves n, the number of legs and the genus g := |E| — |V|+ 1
GC =D GC,n
g7n
and each GC, , is finite dimensional.
O 3 = = Ha



For example:

The chain complex: GCq 4
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For example:

The chain complex: GCq 4

0 else

2 ifi=1
H;(GC0’4) = {Q
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For example:

The chain complex: GCy4

x 3

x6
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3
Hi(GCy4) = {?

Ben Ward

For example:

The chain complex: GCy4

x 3

x6

ifi=4
else
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For example
The chain complex: GCj 5
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For example
The chain complex: GCj 5

12 5fj=5
Hi(GCy4) = {?

else

e A X
/A M

Ben Ward

Introduction to Graph Complexes




A few first results

When g = 0 and n > 3, [Ginzburg-Kapranov '94]
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A few first results

When g = 0 and n > 3, [Ginzburg-Kapranov '94]

Bi(GCo,n) = {g" —2) ifi=n-3

else
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A few first results

When g = 0 and n > 3, [Ginzburg-Kapranov '94]

5,(GCo.n) {én— 2)!

When g =1 and n > 3 [Chan-Galatius-Payne '22]

else
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A few first results

When g = 0 and n > 3, [Ginzburg-Kapranov '94]

5,(GCo.n) {én— 2)!

When g =1 and n > 3 [Chan-Galatius-Payne '22]

ifi=n-—3

else
ﬁi(Gcl,n)

_J(n=1)1/2 ifi=n
o

else
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A few first results

When g = 0 and n > 3, [Ginzburg-Kapranov '94]

5,(GCo.n) {én— 2)!

When g =1 and n > 3 [Chan-Galatius-Payne '22]

ifi=n—-3
else

ﬁi(Gcl,n)

_J(n=1)1/2 ifi=n
o
When g =2 and n > 4 [Chan '22]

else
(GCar) nl
X 2.n =+
’ 12
O D = = Do



A few first results
When g = 0 and n > 3, [Ginzburg-Kapranov '94]
n—=2) ifi=n-3
Bi(GCo,n) = ( )
0 else
When g =1 and n > 3 [Chan-Galatius-Payne '22]
n—1)1/2 ifi=n
51(GCu) = {( W
0 else

When g =2 and n > 4 [Chan '22]

nl

X(GCZH) = Zl:E

@ The betti numbers are unknown!

Ben Ward Introduction to Graph Complexes Fall 2025 12/28



Collapse of repeated markings

How to prove the previous results?
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Collapse of repeated markings

How to prove the previous results? Recall the cancellation

Yo =CIN = O (RIS

U IR U Y
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How to prove the previous results? Recall the cancellation:

<«
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Collapse of repeated markings

How to prove the previous results? Recall the cancellation:

mateing
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Collapse of repeated markings

How to prove the previous results? Recall the cancellation:

<«

Theorem (CGP '22)

markings is acyclic.

Ben Ward

Let g > 1. The subcomplex of GC, , indexed by graphs with repeated
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Why study graph homology?

Theorem (Willwacher '15)

P H6(GCs o) = gty

=] = = E A
Ben Ward Introduction to Graph Complexes




Ben Ward

Why study graph homology?
Theorem (Willwacher '15)

Corollary (Willwacher)

Odd wheels are not boundaries

P H6(GCs o) = gty
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Why study graph homology?
Theorem (Willwacher '15)

Corollary (Willwacher)

Odd wheels are not boundaries

P H6(GCs o) = gty
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Why study graph homology?

Theorem (Chan-Galatius-Payne '21 & '22)

H.(GCg.n) — H*(Mg,n)
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Why study graph homology?

Theorem (Chan-Galatius-Payne '21 & '22)
For example Mg , 1= = C(S?

H.(GCqg n) — H* (Mg, n)

o

,n)/ ~ modulo Mobius transformations...

N

1
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Why study graph homology?

Theorem (Chan-Galatius-Payne '21 & '22)
For example Mg , 1= = C(S?

H.(GCqg n) — H* (Mg, n)

o

,n)/ ~ modulo Mobius transformations...

7 |
For example H"~3(Mo ) = H,—-3(GCo,n)

©
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Why study graph homology?
Theorem (Chan-Galatius-Payne '21 & '22)

H.(GCq n) — H* (Mg, )

For example Mg , := C(52,n)/ ~ modulo Mobius transformations...

o

N

©

1

For example H™3(Mo ) = H,—3(GCo,n).
Corollary
For g odd, H*¢~%(M,) # 0.
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Transition

There are many variations on the graph complex construction...
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Transition

d

D

There are many variations on the graph complex construction
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Transition

d

o

There are many variations on the graph complex construction
... let me give you one.
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Here is a marked graph

Now, consider graphs with additional decorations:
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Here is a marked graph

the choice of a vertex.

Now, consider graphs with additional decorations:
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Here is a marked graph

Now, consider graphs with additional decorations:
vertex.

the choice of a vertex and a subset of the half-edges adjacent to said
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Here is a marked graph
Now, consider graphs with additional decorations:

the choice of a vertex and a subset of the half-edges adjacent to said
vertex.

A marked graph is type (g, n, r) provided

[} = = =

QR
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Here is a marked graph

Now, consider graphs with additional decorations:

A marked graph is type (g, n, r) provided
o g = #Edges — #Vertices + 2
@ n = #legs

@ r = #marked half edges

=) = = = Q>
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Here is a marked graph

Now, consider graphs with additional decorations:

A marked graph is type (g, n, r) provided
o g = #Edges — #Vertices + 2
@ n = #legs
@ r = #marked half edges

This graph is of type (4,5,4).
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Chain complex of marked graphs: MGC
Fix g, n > 0 with 2g + n > 3. Define

MGC(g, n, r)

@ det ’7)Aut
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Chain complex of marked graphs: MGC
Fix g, n > 0 with 2g + n > 3. Define

MGC(g, n, r)
The differential

@ det ’7)Aut

=) = = = Q>
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Chain complex of marked graphs: MGC
Fix g,n > 0 with 2g + n > 3. Define

MGC(g, n, r) @ det(7) aut(+)

taken over isomorphism graphs of type (g, n,s) where s > r.
The differential: sum over edge contractions...
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Chain complex of marked graphs: MGC
Fix g,n > 0 with 2g + n > 3. Define

MGC(g, n, r) @ det(7) aut(+)

taken over isomorphism graphs of type (g, n,s) where s > r.
The differential: sum over edge contractions...

J
@Q+...
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Chain complex of marked graphs: MGC
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Chain complex of marked graphs: MGC
Fix g,n > 0 with 2g + n > 3. Define

MGC(g, n, r) @ det(7) aut(+)

taken over isomorphism graphs of type (g, n,s) where s > r.
The differential: sum over edge contractions and ways to add a marking.

J
@Q+...
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Chain complex of marked graphs: MGC
Fix g,n > 0 with 2g + n > 3. Define

MGC(g, n, r) @ det(7) aut(+)

taken over isomorphism graphs of type (g, n,s) where s > r.
The differential: sum over edge contractions and ways to add a marking.

J
e ey
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Chain complex of marked graphs: MGC
Fix g,n > 0 with 2g + n > 3. Define

MGC(g, n, r) @ det(7) aut(+)

taken over isomorphism graphs of type (g, n,s) where s > r.
The differential: sum over edge contractions and ways to add a marking.

d
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Why MGC(g, n, r)?

Theorem (Payne-Willwacher '24)
There is an injection

H*(MGC(gv n, 11)) — H*(Mg:n)
o & = = ae
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Theorem (Payne-Willwacher '24)
There is an injection
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Why MGC(g, n, r)?

Theorem (Payne-Willwacher '24)
There is an injection

H*(MGC(gv na 11)) — H*(Mg,n)
Why 11?7 Reflects H (M, ,) = 0 for i = 3,5,7,9.
=] = = = o




Case g = 1.

Lemma (W.)

H.(MGC(1, n, k)) is concentrated in degree n — k
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Case g = 1.

Lemma (W.)

sn—l,k,

H.(MGC(1, n, k)) is concentrated in degree n — k with Betti number
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Case g = 1.

Lemma (W.)

H.(MGC(1, n, k)) is concentrated in degree n — k with Betti number

Sn—1,k, the number of permutations of n — 1 letters with k cycles.
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Case g = 1.

Lemma (W.)

H.(MGC(1, n, k)) is concentrated in degree n — k with Betti number
Proof by picture:

Sn—1,k, the number of permutations of n — 1 letters with k cycles.

=] = = E A
Ben Ward Introduction to Graph Complexes




Case g = 1.

Lemma (W.)

H.(MGC(1, n, k)) is concentrated in degree n — k with Betti number

Sn—1,k, the number of permutations of n — 1 letters with k cycles.
Proof by picture:

N

@ Break the symmetry — fix n and only consider the action of S,,_1.
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Case g = 1.
Lemma (W.)

H.(MGC(1, n, k)) is concentrated in degree n — k with Betti number
Sn—1,k, the number of permutations of n — 1 letters with k cycles.

Proof by picture: \

@ Break the symmetry — fix n and only consider the action of S,_1.
© Reduce to a quotient complex with v on the “bottom”.
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Case g = 1.
Lemma (W.)

H.(MGC(1, n, k)) is concentrated in degree n — k with Betti number
Sn—1,k, the number of permutations of n — 1 letters with k cycles.

Proof by picture: \

@ Break the symmetry — fix n and only consider the action of S,_1.
© Reduce to a quotient complex with v on the “bottom”.
© Use knowledge of H(GCo p,) to identify the homology of each branch.
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Case g = 1.
Lemma (W.)

H.(MGC(1, n, k)) is concentrated in degree n — k with Betti number
Sn—1,k, the number of permutations of n — 1 letters with k cycles.

Proof by picture: \

@ Break the symmetry — fix n and only consider the action of S,_1.
© Reduce to a quotient complex with v on the “bottom”.
© Use knowledge of H(GCo p,) to identify the homology of each branch.

Q Observe (n; — 1)! is both the homology of a branch and the number
of cycles you can build from n; letters.
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Relation to Configuration Space

Let C(n,R¥) be the configuration space of n ordered points in R¥
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Relation to Configuration Space

Let C(n,R¥) be the configuration space of n ordered points in R¥

Betti numbers are known, and can be computed recursively. E.g.:

n
= (2> = Sn,n—1

=) = = = Q>
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Relation to Configuration Space

Let C(n, R¥) be the configuration space of n ordered points in R

Betti numbers are known, and can be computed recursively. E.g.:

dim(HY(C(n, R?))) = <g> = Spno1

Theorem (W)

There is an isomorphism of S, 1-representations:

H.(MGC(1,n + 1, k)) = HX"=k)(C(n, R3))

Ben Ward Introduction to Graph Complexes Fall 2025 21/28



Detour — Representation Stability

Can consider the rational cohomology as an S,-representation.
H(C(n,R?)) =
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Detour — Representation Stability

Can consider the rational cohomology as an S,-representation.
Hl(C(n,RZ)) = Vn + Vn—l,l + Vn—2,2
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Detour — Representation Stability

Can consider the rational cohomology as an S,-representation.

HY(C(n,R?)) =V, + V11 + Viop = V(0) + V(1) + V(2)
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Detour — Representation Stability

Can consider the rational cohomology as an S,-representation.
for n > 4.

HY(C(n,R?)) =V, + V11 + Viop = V(0) + V(1) + V(2)
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Detour — Representation Stability

Can consider the rational cohomology as an S,-representation.
HY(C(n,R?)) = Vi, + V11 + Vazp = V(0) + V(1) + V(2)

for n > 4.

Theorem (Church & Farb '13)

Fix i and k. The sequence of S, representations H'(C(n,R¥)) exhibit
representation stability.
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Can consider the rational cohomology as an S,-representation.
HY(C(n,R?)) = Vi, + V11 + Vazp = V(0) + V(1) + V(2)

for n > 4.

Theorem (Church & Farb '13)

Fix i and k. The sequence of S, representations H'(C(n,R¥)) exhibit
representation stability.

The same thing happens for MGC(g, n+ j, k + j):
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Detour — Representation Stability

Can consider the rational cohomology as an S,-representation.
HY(C(n,R?)) = V4 V11 + Voo = V(0) + V(1) + V(2)
for n > 4.

Theorem (Church & Farb '13)

Fix i and k. The sequence of S, representations H'(C(n,R¥)) exhibit
representation stability.

The same thing happens for MGC(g, n+ j, k + j):

Theorem (Fedah-W.)

For each g and n — k the family MGC(g, n + j, k + j) is representation
stable,
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Detour — Representation Stability

Can consider the rational cohomology as an S,-representation.
HY(C(n,R?)) = V4 V11 + Voo = V(0) + V(1) + V(2)
for n > 4.

Theorem (Church & Farb '13)

Fix i and k. The sequence of S, representations H'(C(n,R¥)) exhibit
representation stability.

The same thing happens for MGC(g, n+ j, k + j):

Theorem (Fedah-W.)

For each g and n — k the family MGC(g, n + j, k + j) is representation
stable, with a precisely determined sharp bound.
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Detour — Representation Stability

Can consider the rational cohomology as an S,-representation.
HY(C(n,R?)) = V4 V11 + Voo = V(0) + V(1) + V(2)
for n > 4.

Theorem (Church & Farb '13)

Fix i and k. The sequence of S, representations H'(C(n,R¥)) exhibit
representation stability.

The same thing happens for MGC(g, n+ j, k + j):

Theorem (Fedah-W.)

For each g and n — k the family MGC(g, n + j, k + j) is representation
stable, with a precisely determined sharp bound.

This can be used to establish non-triviality of certain homology classes
using Payne and Willwacher's result.
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Relation between GC and MGC

GC and MGC aren't just parallel case studies...
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=] = = E A
Ben Ward Introduction to Graph Complexes



Relation between GC and MGC

GC and MGC aren’t just parallel case studies... they're closely related

Rough idea: there is a map given by contracting cycles.

g
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Relation between GC and MGC

GC and MGC aren’t just parallel case studies... they're closely related

Rough idea: there is a map given by contracting cycles.

Ag"?@@
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Relation between GC and MGC

GC and MGC aren’t just parallel case studies... they're closely related

Rough idea: there is a map given by contracting cycles.

Ag"%/ﬁg
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Relation between GC and MGC
Theorem (W)

Cycle contraction gives an isomorphism of graded S,-modules:
r odd

H(GC1,n) = €5 H(MGC(1,n, r)).

Ben Ward
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Relation between GC and MGC
Theorem (W)

Cycle contraction gives an isomorphism of graded S,-modules:
r odd

H(GC1,n) = €5 H(MGC(1,n, r)).

Why Odd?
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Relation between GC and MGC
Theorem (W)

Cycle contraction gives an isomorphism of graded S,-modules:

H(GC1,n) = €5 H(MGC(1,n, r)).
r odd

- ¥

Why Odd?
Corollary
groHs (M1,n41) @ Hai(C
S et
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Foreshadowing...

Recall Willwacher used the correspondence with gtt; to construct a family
of commutative graph homology classes 011

LXK
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Foreshadowing...

Recall Willwacher used the correspondence with gtt; to construct a family
of commutative graph homology classes 011

L X K

Compare this to the above isomorphism which involved contraction of odd

polygons...
T

Ben Ward Introduction to Graph Complexes Fall 2025 25/28



Foreshadowing...

Recall Willwacher used the correspondence with gtt; to construct a family
of commutative graph homology classes 011

L X K

Compare this to the above isomorphism which involved contraction of odd

polygons...
T

How could we use this to detect the wheel graph in L(2j + 1,0)?
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Looking ahead...

The above story when g = 1 can be generalized:
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Looking ahead...

The above story when g = 1 can be generalized:

Theorem

There is a short exact sequence of the form:

acyclic
0 — Ker(g, n) — complex GCgpn—0

What is this acyclic complex?
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Looking ahead...

The above story when g = 1 can be generalized:

Theorem

There is a short exact sequence of the form:

acyclic
0 — Ker(g, n) — complex GCqn — 0

What is this acyclic complex?
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Looking ahead...

The above story when g = 1 can be generalized:

Theorem

There is a short exact sequence of the form:

acyclic
0 — Ker(g, n) — complex GCqn =0

What is this acyclic complex?
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Looking ahead...

The above story when g = 1 can be generalized:

Theorem

There is a short exact sequence of the form:

acyclic
0 — Ker(g, n) — complex GCqn — 0

What is this acyclic complex?

d
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Looking ahead...

The above story when g = 1 can be generalized:

Theorem

There is a short exact sequence of the form:

acyclic
0 — Ker(g, n) — complex GCqn — 0

What is this acyclic complex?

d

— T\

]
Ben Ward Introduction to Graph Complexes




Looking ahead...
The above story when g = 1 can be generalized:
Theorem

There is a short exact sequence of the form:

acyclic
0 — Ker(g, n) — complex GCgpn—0

What is this acyclic complex?

d
— T /d\‘\

)

d = )_ contraction of subgraphs.
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Started with edge contraction:
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Started with edge contraction:

A i

TAERURR

Would like to introduce “higher operations”
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Started with edge contraction:

A i

Would like to introduce “higher operations”:
d d
@ - X @ =
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Next time...
d d
@ — X @ .

@
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Next time...

H v e

SR BN .
@ What information do | need to retain when contracting subgraphs.
[} = = = QA



Next time...

T e

o —4d o .
@ What information do | need to retain when contracting subgraphs.
@ Why would variations on the graph complex construction be related?
o = = = DA



Next time...

T e

@ What information do | need to retain when contracting subgraphs.
@ Why would variations on the graph complex construction be related?

Higher operations arise from an analogy

Associative Algebras :: Modular operads
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