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Last Time...

We looked at a chain complex GC built from graphs.
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Last Time...

Then we looked at a chain complex built from decorated graphs MGC
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Last Time...

These chain complex each compute homology of interesting spaces
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Last Time

Today: indicate how they're related
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Last Time

Today: indicate how they're related via higher structures.
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Relation between GC and MGC

Rough idea: there is a map given by contracting cycles.
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Relation between GC and MGC

Rough idea: there is a map given by contracting cycles.
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Rough idea: there is a map given by contracting cycles.
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Relation between GC and MGC

Rough idea: there is a map given by contracting cycles.
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Relation between GC and MGC
Theorem (W)

Cycle contraction gives an isomorphism of graded S,-modules:
r odd

H(GC1,n) = €5 H(MGC(1,n, r)).
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Relation between GC and MGC
Theorem (W)

Cycle contraction gives an isomorphism of graded S,-modules:
r odd

H(GC1,n) = €5 H(MGC(1,n, r)).

Why Odd?
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Relation between GC and MGC
Theorem (W)

Cycle contraction gives an isomorphism of graded S,-modules:

H(GC1,n) = €5 H(MGC(1,n, r)).
r odd

- ¥

Why Odd?
Corollary
groHs (M1,n41) @ Hai(C
S et
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Foreshadowing...

Recall Willwacher used the correspondence with gtt; to construct a family
of commutative graph homology classes 011

LXK
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Foreshadowing...

Recall Willwacher used the correspondence with gtt; to construct a family
of commutative graph homology classes 011

L X K

Compare this to the above isomorphism which involved contraction of odd

polygons...
T
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Foreshadowing...

Recall Willwacher used the correspondence with gtt; to construct a family
of commutative graph homology classes 011

L X K

Compare this to the above isomorphism which involved contraction of odd

polygons...
T

How could we use this to detect the wheel graph in L(2j + 1,0)?
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Look at g > 1 case

The g = 1 story can be generalized:
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Look at g > 1 case

The g = 1 story can be generalized:
Theorem

There is a short exact sequence of the form:

acyclic
0 — Ker(g, n) — complex GCgpn—0

What is this acyclic complex?
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Look at g > 1 case

The g = 1 story can be generalized:

Theorem

There is a short exact sequence of the form:

acyclic
0 — Ker(g, n) — complex GCqn — 0

What is this acyclic complex?
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Look at g > 1 case

The g = 1 story can be generalized:

Theorem

There is a short exact sequence of the form:

acyclic
0 — Ker(g, n) — complex GCqn — 0

What is this acyclic complex?
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Look at g > 1 case
The g = 1 story can be generalized:

Theorem

There is a short exact sequence of the form:

acyclic
0 — Ker(g, n) — complex GCgpn—0

What is this acyclic complex?

d
— T /d\‘\
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d = )_ contraction of subgraphs.
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Started with edge contraction:
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Started with edge contraction:
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Would like to introduce “higher operations”
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Started with edge contraction:

A i

Would like to introduce “higher operations”:
d d
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Today's questions
d d
@ ~ N @ —
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Today's questions
d d
@ ~ N @ —

@ What information do | need to retain when contracting subgraphs.
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Today's questions
d d
@ ~ N @ —

@ What information do | need to retain when contracting subgraphs.

@ Why would variations on the graph complex construction be related?
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Today's questions

T e

@ What information do | need to retain when contracting subgraphs.
@ Why would variations on the graph complex construction be related?

Higher operations arise from an analogy

Associative Algebras :: Modular operads
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Recollection of A,.-algebras

n — 2 such that:

Definition (Stasheff): The associahedron K, is a polytope of dimension
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Recollection of A,.-algebras

n — 2 such that:

Definition (Stasheff): The associahedron K, is a polytope of dimension

@ vertices = ways to parenthesize a string of n letters,
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Recollection of A,.-algebras

Definition (Stasheff): The associahedron K, is a polytope of dimension
n — 2 such that:

@ vertices = ways to parenthesize a string of n letters,

@ edges = strings of n letters missing one pair of parentheses,
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Recollection of A,.-algebras

Definition (Stasheff): The associahedron K, is a polytope of dimension
n — 2 such that:

@ vertices = ways to parenthesize a string of n letters,
@ edges = strings of n letters missing one pair of parentheses,

o faces = strings of n letters missing two pair of parentheses
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Recollection of A,.-algebras

Definition (Stasheff): The associahedron K, is a polytope of dimension
n — 2 such that:

@ vertices = ways to parenthesize a string of n letters,
@ edges = strings of n letters missing one pair of parentheses,
o faces = strings of n letters missing two pair of parentheses and so on,

@ adjacency is determined by adding parentheses.
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Recollection of A,.-algebras

Definition (Stasheff): The associahedron K, is a polytope of dimension
n — 2 such that:

@ vertices = ways to parenthesize a string of n letters,
@ edges = strings of n letters missing one pair of parentheses,
@ faces = strings of n letters missing two pair of parentheses and so on,

@ adjacency is determined by adding parentheses.

Case n = 3:

° °
(ab)c a(bc)
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Recollection of A,.-algebras

Definition (Stasheff): The associahedron K}, is a polytope of dimension
n — 2 such that:

@ vertices = ways to parenthesize a string of n letters,

@ edges = strings of n letters missing one pair of parentheses,

@ faces = strings of n letters missing two pair of parentheses and so on,
@ adjacency is determined by adding parentheses.

Case n = 3:

o abc o
(ab)c a(bc)
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Recollection of A,.-algebras

Example of Kj.

String of
4 |etters

Polytope

abcd
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Recollection of A,.-algebras

Example of Kj.

String of
4 |etters

Polytope

((ab)c)d
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Recollection of A,.-algebras

Example of Kj.

String of
4 |etters

Polytope

((ab)c)d
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Recollection of A,.-algebras

Example of Kj.

String of
4 |etters

Polytope

((ab)c)d
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Recollection of A,.-algebras

Example of Kj.

String of
4 |etters

Polytope

(abc)d

(abc)d
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Recollection of A,.-algebras

Example of Kj.
String Of Po'ytope
4 letters
(ab)cd
=] = = = = 9vQQ
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Recollection of A,.-algebras

Example of Kj.
String of Polytope
4 |etters -
(ab)(cd)
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Recollection of A,.-algebras

Example of Kj.
String of Polytope
4 |etters
ab(cd)
ab(cd)
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Recollection of A,.-algebras

Example of Kj.

String Of P0|ytope
4 |letters
a(b(Cd)) a(b(cd))
ﬁl - = :f ) Q (€2
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Recollection of A,.-algebras

Example of Kj.
String of Polytope
4 |etters
a(bcd)
a(bcd)
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Recollection of A,.-algebras

Example of Kj.
String Of P0|ytope
4 |letters
a((bc)d)
- = :f ) Q (€2
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Recollection of A,.-algebras

Example of Kj.
String Of Po'ytope
4 letters
albc)d
ﬁl - = :f ) Q (€2
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Recollection of A,.-algebras

Example of Kj.

String of
4 |etters

(albc))d

(albc))d

Polytope
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Recollection of A,.-algebras

Example of Kj.

String of
4 |etters

Polytope
abcd

(ab)(cd)
(ab)cd

ab(cd)
((ab)c)d ea(b(cd))
(abc)d a(bcd)
(albc))d” albc)d ~a(lbc)d)
=] = = E = QC
Ben Ward Introduction to Graph Complexes — Il




Associahedra

Example: Ks

o = = E E Al
Ben Ward Introduction to Graph Complexes — Il



Associahedra

Example: Ks

Example: Ky = o
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Associahedra encode A..-algebras

Informal Definition:
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Associahedra encode A..-algebras

Informal Definition: An A, algebra is a chain complex A with
compatible linear map A®" — A for every cell in K,, (for each n)

a
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Associahedra encode A..-algebras
Informal Definition: An A, algebra is a chain complex A with a

compatible linear map A®™ — A for every cell in K, (for each n).

What is needed to specify an A.-algebra?
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Associahedra encode A..-algebras

Informal Definition: An A, algebra is a chain complex A with a

compatible linear map A®™ — A for every cell in K, (for each n).

What is needed to specify an Ax.-algebra?

K>

need p2: A®2 — A of degree 0
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Associahedra encode A..-algebras

Informal Definition: An A, algebra is a chain complex A with a
compatible linear map A®™ — A for every cell in K,, (for each n).

What is needed to specify an Ax.-algebra?

b
K> . need pip: A®2 — A of degree 0
(ab)c abc a(bc)
K3 . °
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Associahedra encode A..-algebras

Informal Definition: An A, algebra is a chain complex A with a
compatible linear map A®™ — A for every cell in K,, (for each n).

What is needed to specify an Ax.-algebra?

K>

ab
°

need jip: A%2 — A of degree 0

Ks

(ab)c

abc

a(bc)

need 3 : A3 — A of degree 1
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Associahedra encode A..-algebras

Informal Definition: An A, algebra is a chain complex A with a
compatible linear map A®™ — A for every cell in K,, (for each n).

What is needed to specify an Ax.-algebra?

b
K> . need jip: A®2 — A of degree 0
(ab)c abc a(bc)
K3 - o need 3 : A3 — A of degree 1
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Associahedra encode A..-algebras

Informal Definition: An A, algebra is a chain complex A with a
compatible linear map A®" — A for every cell in K, (for each n).

What is needed to specify an Ax.-algebra?

ab
Ko . need po: A®2 — A of degree 0
M 3
(ab)c abc a(bc) 3
K3 R —— need 3 : A®3 — A of degree 1
(ab)(cd)
(ab)cd ab(cd)
((ab)c)d a(b(cd))
(abc)d a(bcd)
Ka (a(bc))d® BT *a((ba)d) need 14: A®* — A of degree 2
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Associahedra encode A..-algebras

Informal Definition: An A, algebra is a chain complex A with a
compatible linear map A®" — A for every cell in K, (for each n).

What is needed to specify an Ax.-algebra?

ab

K> o need 112: A®? — A of degree 0

(ab)c abc a(bc) 3
K3 R —— need 3 : A®3 — A of degree 1

(ab)(cd)
(ab)cd ab(cd)
((ab)o)d a(b(cd))
(abc)d a(bcd)
Ka (a(bc)d® 3BAT *a((bo)d) need 14: A®* — A of degree 2
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Associahedra encode A..-algebras

Informal Definition: An A, algebra is a chain complex A with a
compatible linear map A®" — A for every cell in K, (for each n).

What is needed to specify an Ax.-algebra?
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Associahedra encode A..-algebras

Informal Definition: An A, algebra is a chain complex A with a
compatible linear map A®" — A for every cell in K, (for each n).

What is needed to specify an A.-algebra?
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Associahedra encode A..-algebras

Informal Definition: An A, algebra is a chain complex A with a
compatible linear map A®" — A for every cell in K,, (for each n).

What is needed to specify an As.-algebra?

ab
Ko o need 115: A®2 — A of degree 0
I
(ab)c abc a(bc) 3
Ks ° ° need 13 : A®3 — A of degree 1
M g
(ab)(cd)
(ab)cd ab(cd)
((ab)c)d a(b(cd))
(abc)d a(bcd)
Ky (albc))d®a(boyd al(bo)d) need jig: A%* — A of degree 2
and so on...
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Associahedra encode A..-algebras

Informal Definition: An A, algebra is a chain complex A with a
compatible linear map A®™ — A for every cell in K, (for each n).

What is needed to specify an As.-algebra?

ab
K> . need 1ip: A®2 — A of degree 0
(ab)c abc a(bc) 3
K3 - o need 113 : A®3 — A of degree 1
(ab)(cd)
(ab)cd ab(cd)
((ab)c)d a(b(cd))
(abc)d a(bcd)
Ka (a(bc))d”abe)d a((be)d) need p4: A®* — A of degree 2
and so on... Ax-algebra = (A, 2, u3, tia, s, ...)
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Why A, algebras?

Theorem (Kadeishvili)

Let A be a dg associative algebra over a field of characteristic zero. There
exists an Ao structure on H,(A) such that A ~ H,(A) as Ax.-algebras.
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Why A, algebras?

Theorem (Kadeishvili)

Let A be a dg associative algebra over a field of characteristic zero. There
exists an Ao structure on H,(A) such that A ~ H,(A) as Ax.-algebras.

For example let A= C*(X; Q) with the cup product.
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Why A, algebras?

Theorem (Kadeishvili)

Let A be a dg associative algebra over a field of characteristic zero. There
exists an Ao structure on H,(A) such that A ~ H,(A) as Ax.-algebras.

For example let A= C*(X;Q) with the cup product. This is a finer
invariant than cohomology, H*(X; Q)
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Why A, algebras?

Theorem (Kadeishvili)

Let A be a dg associative algebra over a field of characteristic zero. There
exists an Ao structure on H,(A) such that A ~ H,(A) as Ax.-algebras.

For example let A= C*(X;Q) with the cup product. This is a finer
invariant than cohomology, H*(X; Q) until we add higher operations

fin: H*(A)®" — H*="2(A).
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Why A, algebras?

Theorem (Kadeishvili)

Let A be a dg associative algebra over a field of characteristic zero. There
exists an Ao structure on H,(A) such that A ~ H,(A) as Ax.-algebras.

For example let A= C*(X;Q) with the cup product. This is a finer
invariant than cohomology, H*(X; Q) until we add higher operations

fin: H*(A)®" — H*="2(A).

e For X simply connected, (H*(A), i1n) is a complete invariant of the
rational homotopy type.

@ We will call these higher operations “Massey products”.
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Associativity revisited

Key feature of associahedra: they are contractible.

=] = = E A
Ben Ward Introduction to Graph Complexes — Il



Associativity revisited

Key feature of associahedra: they are contractible.

» | claim this feature is present in much greater generality.
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Associativity revisited

Key feature of associahedra: they are contractible.
@ Revisit associativity:

» | claim this feature is present in much greater generality.
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Associativity revisited

Key feature of associahedra: they are contractible.
@ Revisit associativity:

» | claim this feature is present in much greater generality.
abcd =

a b c d
— o o
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Associativity revisited

Key feature of associahedra: they are contractible.
@ Revisit associativity:

abcd =

a b C d
e———0 ——0 — @
allbod) = &——o——&—» >

"bre Aacketsn
o 5 = = A
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Associativity revisited

Key feature of associahedra: they are contractible.
@ Revisit associativity:

abcd =

a b C d
e———0 ——0 — @
allbod) = &——o——&—» >

.:brac/(ets,,
» brackets are either nested or disjoint
o = = = DA

» | claim this feature is present in much greater generality.



Associativity revisited

Key feature of associahedra: they are contractible.

» | claim this feature is present in much greater generality.

@ Revisit associativity:

a b C d
abcd = e——o@——®——@
"bZac/(ets..

» brackets are either nested or disjoint

Lemma (W.) The space of bracketings of any graph is contractible,

in fact it is a polytope.

Ben Ward Introduction to Graph Complexes — Il
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The space of bracketings of any graph is contractible

Graph

Polytope
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The space of bracketings of any graph is contractible

Polytope
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The space of bracketings of any graph is contractible

Graph

Polytope

[
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The space of bracketings of any graph is contractible

Polytope
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The space of bracketings of any graph is contractible

Graph

Polytope
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Example of a square graph.

Polytope
Graph
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Example of a square graph.
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Example of a square graph.

Graph

Ben Ward

Polytope

Introduction to Graph Complexes — Il




Example of a square graph.

Graph

Polytope

Ben Ward

Introduction to Graph Complexes — Il




Example of a square graph.

Graph

Polytope

Ben Ward

Introduction to Graph Complexes — Il




Example of a square graph.

Graph

Polytope

Ben Ward

Introduction to Graph Complexes — Il

D¢




Example of a square graph.

Graph

Ben Ward

Polytope

Introduction to Graph Complexes — Il




Example of a square graph.

Graph

Ben Ward

Polytope

Introduction to Graph Complexes — Il




Example of a square graph.

Graph

Polytope

Ben Ward

Introduction to Graph Complexes — Il

D¢




Example of a square graph.

Graph

Polytope

Ben Ward

Introduction to Graph Complexes — Il

D¢




Example of a square graph.

Graph

Ben Ward

Polytope

Introduction to Graph Complexes — Il




Example of a square graph.

Graph

Ben Ward

Polytope

Introduction to Graph Complexes — Il




Example of a square graph.

Graph

Polytope

Ben Ward

Introduction to Graph Complexes — |1

DA
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Example of a square graph.

Polytope
Graph

Ben Ward Introduction to Graph Complexes — Il Fall 2025 16 /29



Example of a square graph.

Polytope
Graph

Let's call these polytopes Bracketohedra.
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An analogy

How do we use this generalization?
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An analogy

How do we use this generalization?

then

Algebraic structure

Associativity

Combinatorics

Multiply along a line

Polytopes

Associahedra

Homotopy Transfer

via Aso-algebras

use to study

Topological spaces
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An analogy

How do we use this generalization?

then now
Algebraic structure || Associativity
Combinatorics || Multiply along a line | Multiply along a graph
Polytopes || Associahedra Bracketohedra
Homotopy Transfer || via A.-algebras
use to study || Topological spaces
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An analogy
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then

now

Algebraic structure
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Multiply along a line
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Polytopes || Associahedra Bracketohedra
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An analogy

How do we use this generalization?

then

now

Algebraic structure

Associativity

Modular Operad

Combinatorics

Multiply along a line

Multiply along a graph

Polytopes || Associahedra Bracketohedra
Homotopy Transfer || via A.-algebras
use to study || Topological spaces
Present Goal: Fill in this table.
Fall 2025
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Modular operads.

(M27 M3, M47

Informal Definition: A modular operad is a sequence of objects
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Modular operads.

Informal Definition: A modular operad is a sequence of objects
(M27 M3, M47

.) and an algebraic operation for every graph:
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Modular operads.

Informal Definition: A modular operad is a sequence of objects
(M27 M3, M47

.) and an algebraic operation for every graph:
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Modular operads.

Informal Definition: A modular operad is a sequence of objects
(M27 M3, M47

.) and an algebraic operation for every graph:

[

external vertex

internal vertex
o = = = = 9Dae




Modular operads.

Informal Definition: A modular operad is a sequence of objects
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Modular operads.

Informal Definition: A modular operad is a sequence of objects
(M27 M3, M47

.) and an algebraic operation for every graph:

M6xM3xM4
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Examples of modular operads

Let A be an associative algebra and define (M,, M3, My,

) =(A,0,0,...)
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Examples of modular operads

Let A be an associative algebra and define (Ma, M3, Ma,

) =(A,0,0,...)
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Examples of modular operads

Let A be an associative algebra and define (Ma, M3, Ma,

Ox0x0 0
o = = = Qe

) = (A,0,0,...)




Examples of modular operads
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Let A be an associative algebra and define (Ma, M3, Ma,

) = (A,0,0,...)




Examples of modular operads

Let A be an associative algebra and define (M,, M3, My,

) = (A,0,0,...)

@ The operations are trivial unless all internal vertices have valence 2.
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Examples of modular operads

Let A be an associative algebra and define (M,, M3, My,

2) =(A,0,0,...)

@ The operations are trivial unless all internal vertices have valence 2.
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Examples of modular operads

Let A be an associative algebra and define (M,, M3, My,

2) =(A,0,0,...)

@ The operations are trivial unless all internal vertices have valence 2.

@ @
2 2
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Examples of modular operads

Let A be an associative algebra and define (M,, M3, My,

2) =(A,0,0,...)

@ The operations are trivial unless all internal vertices have valence 2.

°® o ® 1) .
2 2 2

AXAXAXA A
a, b, c, abcd
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Examples of modular operads

Let A be an associative algebra and define (M,, M3, My, ...) = (A,0,0,...)

@ The operations are trivial unless all internal vertices have valence 2.

. °® ° ® 1) .
2 2 2
AXAXAXA A
a, b, c, abcd

@ Modular operads generalize associativity.
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Examples of modular operads

Let V be a vector space and V ® V

(
Define (Ma, M3, My, ...) = (V&2 V€3 /84,

=3 Q an inner product.

).
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0€ed

V*Vvie v

V®7
_ >
=] = = E A
Ben Ward Introduction to Graph Complexes — Il




Examples of modular operads

Let V be a vector space and V ® V

(
Define (Ma, M3, My, ...) = (V&2 V€3 /84,

).

=3 Q an inner product.
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Examples of modular operads

Let V be a vector space and V ® V

(
Define (Ma, M3, My, ...) = (V&2 V€3 /84,

).

=3 Q an inner product.

Ben Ward
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Examples of modular operads

Let V be a vector space and V ® V

(
Define (Ma, M3, My, ...) = (V&2 V€3 /84,

).

=3 Q an inner product.

VPV v

V®7
_ >
=] = = E A
Ben Ward Introduction to Graph Complexes — Il



Examples of modular operads

boundary components.

Surfaces: Let M, be the set of compact, orientable surfaces with n
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Examples of modular operads

boundary components.

Surfaces: Let M, be the set of compact, orientable surfaces with n
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Examples of modular operads

boundary components.

Surfaces: Let M, be the set of compact, orientable surfaces with n

M, X M, X M,

7
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Examples of modular operads

boundary components.

Surfaces: Let M, be the set of compact, orientable surfaces with n
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Examples of modular operads

boundary components.

Surfaces: Let M, be the set of compact, orientable surfaces with n

n
€/,
or €meg ne
M7
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Examples of modular operads

boundary components.

Surfaces: Let M, be the set of compact, orientable surfaces with n

n
€/,
M6 X M3 X M4 M7
@ Surfaces form a modular operad by gluing.
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Other examples of modular operads:
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Other examples of modular operads:

@ Moduli spaces of surfaces with boundary.
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@ Moduli spaces of surfaces with boundary.

@ Deligne-Mumford compactifications of surfaces with punctures.
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Other examples of modular operads

@ Moduli spaces of surfaces with boundary.

@ Graph complexes...

@ Deligne-Mumford compactifications of surfaces with punctures.
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Other examples of modular operads:

@ Moduli spaces of surfaces with boundary.
@ Deligne-Mumford compactifications of surfaces with punctures.

@ Graph complexes...

It's preferable to separate out the genus: M = {M, ,}.
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Back to the analogy

then

now

Algebraic structure

Associativity

Modular Operad

Combinatorics

Multiply along a line

Multiply along a graph

Polytopes || Associahedra Bracketohedra
Homotopy Transfer || via Asc-algebras
use to study || Topological spaces
Present Goal: Fill in this table.
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Generalizing the classical Ay, story we have:

Homotopy Transfer Theorem for Modular Operads.
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Homotopy Transfer Theorem for Modular Operads.

Generalizing the classical Ay, story we have:
Theorem (W.)

Every dg modular operad is quasi-isomorphic to a “As-modular operad’
structure on its homology.
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Homotopy Transfer Theorem for Modular Operads.
Generalizing the classical Ay, story we have:
Theorem (W.)

Every dg modular operad is quasi-isomorphic to a “As.-modular operad”
structure on its homology.

Proof.

© Encode modular operads as algebras over a quadratic operad.
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Homotopy Transfer Theorem for Modular Operads.
Generalizing the classical Ay, story we have:
Theorem (W.)

Every dg modular operad is quasi-isomorphic to a “As.-modular operad”
structure on its homology.

Proof.

© Encode modular operads as algebras over a quadratic operad. This
requires using colored operads whose colors form not just a set but a

groupoid.
Ben Ward Introduction to Graph Complexes — Il

Fall 2025 27/29



Homotopy Transfer Theorem for Modular Operads.
Generalizing the classical Ay, story we have:
Theorem (W.)

Every dg modular operad is quasi-isomorphic to a “As.-modular operad”
structure on its homology.

Proof.

© Encode modular operads as algebras over a quadratic operad. This

requires using colored operads whose colors form not just a set but a
groupoid.

© Prove that the operad encoding modular operads is Koszul.
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structure on its homology.

Proof.

© Encode modular operads as algebras over a quadratic operad. This
requires using colored operads whose colors form not just a set but a
groupoid.

© Prove that the operad encoding modular operads is Koszul. This is
where we use contractibility of bracketohedra.
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Homotopy Transfer Theorem for Modular Operads.

Generalizing the classical Ay, story we have:

Theorem (W.)

Every dg modular operad is quasi-isomorphic to a “As.-modular operad”
structure on its homology.

Proof.

© Encode modular operads as algebras over a quadratic operad. This
requires using colored operads whose colors form not just a set but a
groupoid.

© Prove that the operad encoding modular operads is Koszul. This is
where we use contractibility of bracketohedra.

© Generalize classical Koszul duality theory from operads to groupoid
colored operads.
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Back to the analogy... one last time.

How do we use this generalization?

then

now

Algebraic structure

Associativity

Modular Operad

Combinatorics

Multiply along a line

Multiply along a graph

Polytopes

Associahedra

Bracketohedra

Homotopy Transfer

via Aso-algebras

via Aso- modular operads

use to study

Topological spaces
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Next time...
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