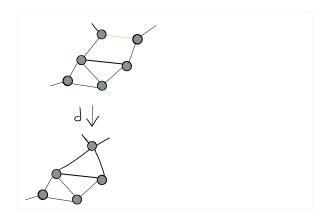
Introduction to Graph Complexes - II

Ben Ward

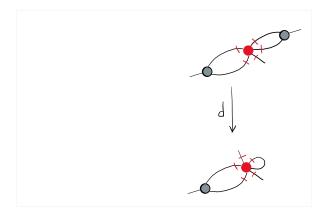
Bowling Green State University

IISER – Kolkata November 2025

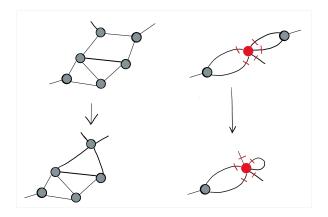
We looked at a chain complex GC built from graphs.



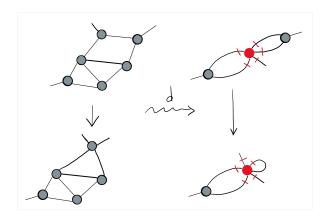
Then we looked at a chain complex built from decorated graphs MGC.



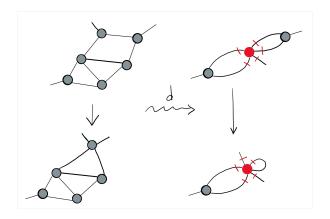
These chain complex each compute homology of interesting spaces.

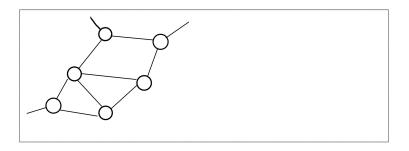


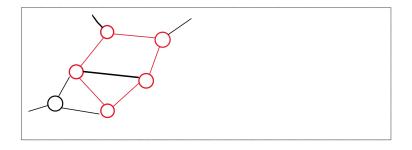
Today: indicate how they're related...

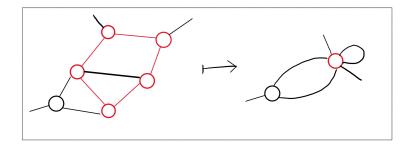


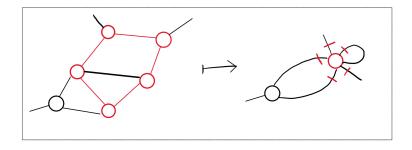
Today: indicate how they're related via higher structures.







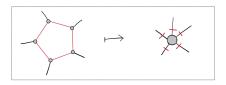




Theorem (W)

Cycle contraction gives an isomorphism of graded S_n -modules:

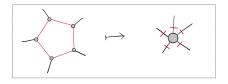
$$H(\mathsf{GC}_{1,n}) \cong \bigoplus_{r \ odd} H(\mathsf{MGC}(1,n,r)).$$



Theorem (W)

Cycle contraction gives an isomorphism of graded S_n -modules:

$$H(\mathsf{GC}_{1,n}) \cong \bigoplus_{r \ odd} H(\mathsf{MGC}(1,n,r)).$$

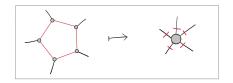


Why Odd?

Theorem (W)

Cycle contraction gives an isomorphism of graded S_n -modules:

$$H(\mathsf{GC}_{1,n}) \cong \bigoplus_{r \ odd} H(\mathsf{MGC}(1,n,r)).$$



Why Odd?

Corollary

$$\operatorname{\mathsf{gr}}_0 H^{\operatorname{c}}_{ullet}(\mathcal{M}_{1,n+1}) \cong \bigoplus_i H_{4i}(\operatorname{C}(n,\mathbb{R}^3))$$

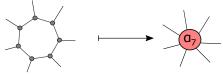
Foreshadowing...

Recall Willwacher used the correspondence with \mathfrak{grt}_1 to construct a family of commutative graph homology classes σ_{2j+1}

Foreshadowing...

Recall Willwacher used the correspondence with \mathfrak{grt}_1 to construct a family of commutative graph homology classes σ_{2j+1}

Compare this to the above isomorphism which involved contraction of odd polygons...



Foreshadowing...

Recall Willwacher used the correspondence with \mathfrak{grt}_1 to construct a family of commutative graph homology classes σ_{2j+1}

Compare this to the above isomorphism which involved contraction of odd polygons...

How could we use this to detect the wheel graph in L(2j + 1, 0)?

5/29

The g = 1 story can be generalized:

The g = 1 story can be generalized:

Theorem

There is a short exact sequence of the form:

$$0 o \mathsf{Ker}(g, n) \hookrightarrow {}^{acyclic}_{complex} \twoheadrightarrow \mathsf{GC}_{g,n} \to 0$$

The g = 1 story can be generalized:

Theorem

There is a short exact sequence of the form:

$$0 \to \mathsf{Ker}(g, n) \hookrightarrow {}^{acyclic}_{complex} \twoheadrightarrow \mathsf{GC}_{g,n} \to 0$$

The g = 1 story can be generalized:

Theorem

There is a short exact sequence of the form:

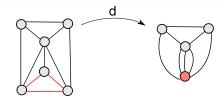
$$0 \to \mathsf{Ker}(g, n) \hookrightarrow \overset{acyclic}{complex} \twoheadrightarrow \mathsf{GC}_{g,n} \to 0$$

The g = 1 story can be generalized:

Theorem

There is a short exact sequence of the form:

$$0 \to \mathsf{Ker}(g, n) \hookrightarrow {}^{acyclic}_{complex} \twoheadrightarrow \mathsf{GC}_{g,n} \to 0$$

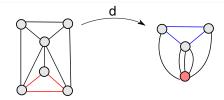


The g = 1 story can be generalized:

Theorem

There is a short exact sequence of the form:

$$0 \to \mathsf{Ker}(g, n) \hookrightarrow {}^{acyclic}_{complex} \twoheadrightarrow \mathsf{GC}_{g,n} \to 0$$



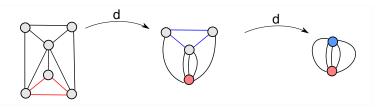
The g = 1 story can be generalized:

Theorem

There is a short exact sequence of the form:

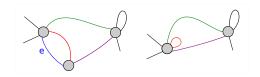
$$0 o \mathsf{Ker}(g, n) \hookrightarrow {}^{acyclic}_{complex} \twoheadrightarrow \mathsf{GC}_{g,n} \to 0$$

What is this acyclic complex?

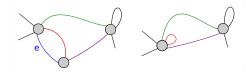


 $d = \sum$ contraction of subgraphs.

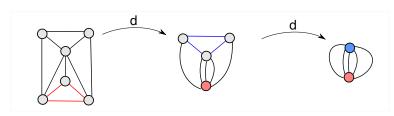
Started with edge contraction:



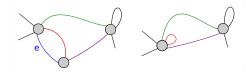
Started with edge contraction:



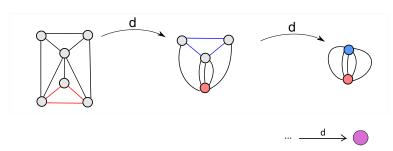
Would like to introduce "higher operations":

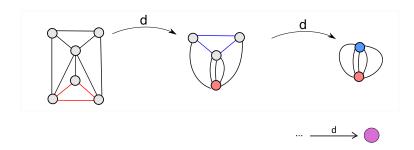


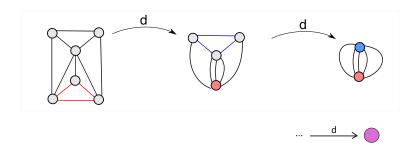
Started with edge contraction:



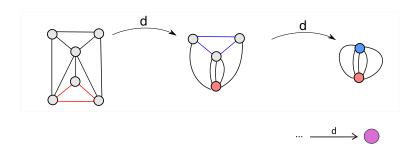
Would like to introduce "higher operations":



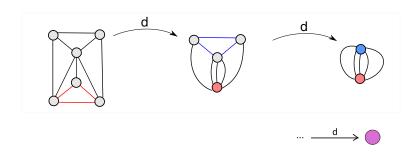




• What information do I need to retain when contracting subgraphs.



- What information do I need to retain when contracting subgraphs.
- Why would variations on the graph complex construction be related?



- What information do I need to retain when contracting subgraphs.
- Why would variations on the graph complex construction be related? Higher operations arise from an analogy

Associative Algebras :: Modular operads

Definition (Stasheff): The associahedron K_n is a polytope of dimension n-2 such that:

 \bullet vertices = ways to parenthesize a string of n letters,

- \bullet vertices = ways to parenthesize a string of n letters,
- \bullet edges = strings of n letters missing one pair of parentheses,

- \bullet vertices = ways to parenthesize a string of n letters,
- \bullet edges = strings of n letters missing one pair of parentheses,
- faces = strings of n letters missing two pair of parentheses

- \bullet vertices = ways to parenthesize a string of n letters,
- \bullet edges = strings of n letters missing one pair of parentheses,
- \bullet faces = strings of n letters missing two pair of parentheses and so on,
- adjacency is determined by adding parentheses.

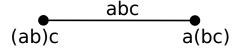
- \bullet vertices = ways to parenthesize a string of n letters,
- \bullet edges = strings of n letters missing one pair of parentheses,
- faces = strings of n letters missing two pair of parentheses and so on,
- adjacency is determined by adding parentheses.

Case
$$n = 3$$
:

Definition (Stasheff): The associahedron K_n is a polytope of dimension n-2 such that:

- \bullet vertices = ways to parenthesize a string of n letters,
- \bullet edges = strings of n letters missing one pair of parentheses,
- faces = strings of n letters missing two pair of parentheses and so on,
- adjacency is determined by adding parentheses.

Case
$$n = 3$$
:



Example of K_4 .

String of Polytope 4 letters

abcd

Example of K_4 .

String of 4 letters

Polytope

((ab)c)d

Example of K_4 .

String of 4 letters

Polytope

((ab)c)d

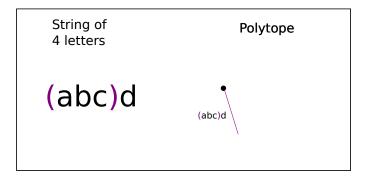
•

Example of K_4 .

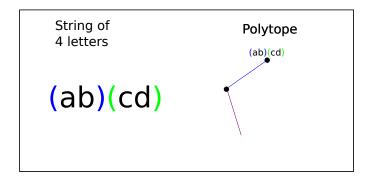
String of 4 letters

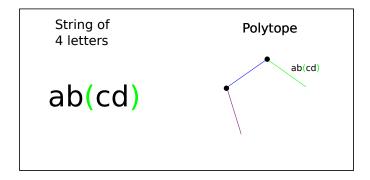
((ab)c)d

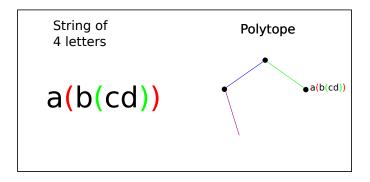
Polytope

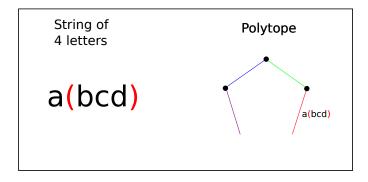


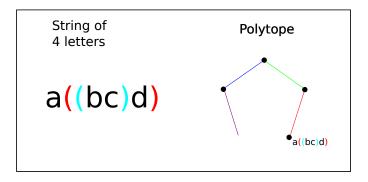


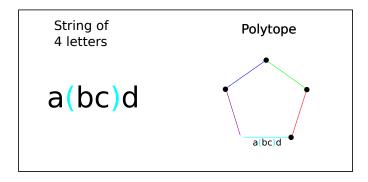


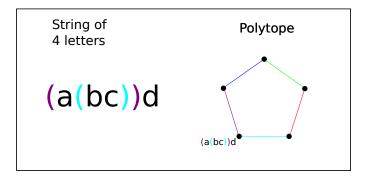


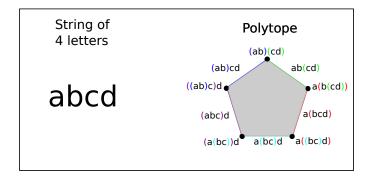






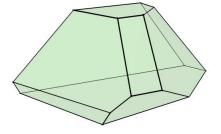






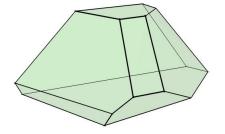
Associahedra

Example: K_5



Associahedra

Example: K_5



Example: $K_2 = \bullet$

Informal **Definition**:

Informal **Definition**: An A_{∞} algebra is a chain complex A with a compatible linear map $A^{\otimes n} \to A$ for every cell in K_n (for each n).

Informal **Definition**: An A_{∞} algebra is a chain complex A with a compatible linear map $A^{\otimes n} \to A$ for every cell in K_n (for each n).

K ₂ ab ●	need $\mu_2\colon A^{\otimes 2} o A$ of degree 0
---------------------	---

Informal **Definition**: An A_{∞} algebra is a chain complex A with a compatible linear map $A^{\otimes n} \to A$ for every cell in K_n (for each n).

K ₂		ab ●		need $\mu_2 \colon A^{\otimes 2} \to A$ of degree 0
K ₃	(ab)c	abc	a(bc) ●	

Informal **Definition**: An A_{∞} algebra is a chain complex A with a compatible linear map $A^{\otimes n} \to A$ for every cell in K_n (for each n).

K_2		ab ●		need $\mu_2\colon A^{\otimes 2} o A$ of degree 0
K ₃	(ab)c	abc	a(bc) ●	need $\mu_3:A^{\otimes 3} o A$ of degree 1

Informal **Definition**: An A_{∞} algebra is a chain complex A with a compatible linear map $A^{\otimes n} \to A$ for every cell in K_n (for each n).

K_2		ab ●		need $\mu_2 \colon A^{\otimes 2} o A$ of degree 0
K ₃	(ab)c	abc	a(bc)	need $\mu_3:A^{\otimes 3} o A$ of degree 1

What is needed to specify an A_{∞} -algebra?

K ₂	ab ●	need $\mu_2\colon A^{\otimes 2} o A$ of degree 0
<i>K</i> ₃	(ab)c abc a(bc)	need $\mu_3:A^{\otimes 3} o A$ of degree 1
	(ab)(cd) (ab)cd ab(cd) ((ab)c)d abcd a(bcd)	
K_4	(a(bc))d a(bc)d a((bc)d)	need $\mu_4\colon A^{\otimes 4} o A$ of degree 2

What is needed to specify an A_{∞} -algebra?

K ₂	ab ●	need $\mu_2 \colon A^{\otimes 2} \to A$ of degree 0
<i>K</i> ₃	(ab)c abc a(bc)	need $\mu_3:A^{\otimes 3} o A$ of degree 1
	(ab)(cd) (ab)cd ab(cd)	
	((ab)c)d abcd	
	(abc)d /a(bcd)	
K_4	(a(bc))d a(bc)d a((bc)d)	need $\mu_4\colon A^{\otimes 4} o A$ of degree 2

What is needed to specify an A_{∞} -algebra?

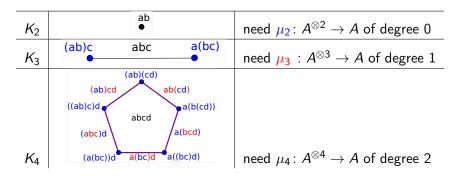
K ₂	ab ●	need $\mu_2 \colon A^{\otimes 2} \to A$ of degree 0
<i>K</i> ₃	(ab)c abc a(bc)	need $\mu_3:A^{\otimes 3} o A$ of degree 1
	(ab)(cd)	
	((ab)c)d abcd a(b(cd))	
	(abc)d /a(bcd)	
K_4	(a(bc))d $a(bc)d$ $a((bc)d)$	need $\mu_4\colon A^{\otimes 4} o A$ of degree 2

Informal **Definition**: An A_{∞} algebra is a chain complex A with a compatible linear map $A^{\otimes n} \to A$ for every cell in K_n (for each n).

K ₂	ab ●	need $\mu_2\colon A^{\otimes 2} o A$ of degree 0
<i>K</i> ₃	(ab)c abc a(bc)	need $\mu_3:A^{\otimes 3} o A$ of degree 1
	(ab)(cd) (ab)cd ab(cd) ((ab)c)d abcd	
K ₄	(abc)d a(bc)d a(bc)d	need $\mu_4\colon A^{\otimes 4} o A$ of degree 2

Informal **Definition**: An A_{∞} algebra is a chain complex A with a compatible linear map $A^{\otimes n} \to A$ for every cell in K_n (for each n).

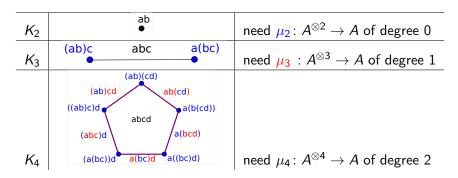
What is needed to specify an A_{∞} -algebra?



and so on...

Informal **Definition**: An A_{∞} algebra is a chain complex A with a compatible linear map $A^{\otimes n} \to A$ for every cell in K_n (for each n).

What is needed to specify an A_{∞} -algebra?



and so on... A_{∞} -algebra = $(A, \mu_2, \mu_3, \mu_4, \mu_5, ...)$

◆ロト ◆団ト ◆豆ト ◆豆 ・ りへの

Theorem (Kadeishvili)

Let A be a dg associative algebra over a field of characteristic zero. There exists an A_{∞} structure on $H_*(A)$ such that $A \sim H_*(A)$ as A_{∞} -algebras.

Theorem (Kadeishvili)

Let A be a dg associative algebra over a field of characteristic zero. There exists an A_{∞} structure on $H_*(A)$ such that $A \sim H_*(A)$ as A_{∞} -algebras.

For example let $A = C^*(X; \mathbb{Q})$ with the cup product.

Theorem (Kadeishvili)

Let A be a dg associative algebra over a field of characteristic zero. There exists an A_{∞} structure on $H_*(A)$ such that $A \sim H_*(A)$ as A_{∞} -algebras.

For example let $A = C^*(X; \mathbb{Q})$ with the cup product. This is a finer invariant than cohomology, $H^*(X; \mathbb{Q})$

Theorem (Kadeishvili)

Let A be a dg associative algebra over a field of characteristic zero. There exists an A_{∞} structure on $H_*(A)$ such that $A \sim H_*(A)$ as A_{∞} -algebras.

For example let $A = C^*(X; \mathbb{Q})$ with the cup product. This is a finer invariant than cohomology, $H^*(X; \mathbb{Q})$ until we add higher operations

$$\mu_n \colon H^*(A)^{\otimes n} \to H^{*-n+2}(A).$$

Theorem (Kadeishvili)

Let A be a dg associative algebra over a field of characteristic zero. There exists an A_{∞} structure on $H_*(A)$ such that $A \sim H_*(A)$ as A_{∞} -algebras.

For example let $A = C^*(X; \mathbb{Q})$ with the cup product. This is a finer invariant than cohomology, $H^*(X; \mathbb{Q})$ until we add higher operations

$$\mu_n \colon H^*(A)^{\otimes n} \to H^{*-n+2}(A).$$

- For X simply connected, $(H^*(A), \mu_n)$ is a complete invariant of the rational homotopy type.
- We will call these higher operations "Massey products".

40 + 40 + 45 + 45 + 5 40 A

Associativity revisited

Key feature of associahedra: they are contractible.

Key feature of associahedra: they are contractible.

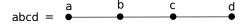
▶ I claim this feature is present in much greater generality.

Key feature of associahedra: they are contractible.

- ▶ I claim this feature is present in much greater generality.
- Revisit associativity:

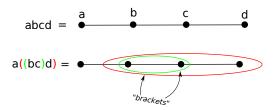
Key feature of associahedra: they are contractible.

- ▶ I claim this feature is present in much greater generality.
- Revisit associativity:



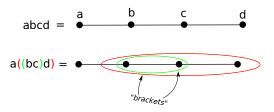
Key feature of associahedra: they are contractible.

- ▶ I claim this feature is present in much greater generality.
- Revisit associativity:



Key feature of associahedra: they are contractible.

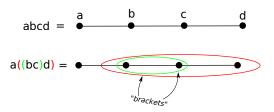
- ▶ I claim this feature is present in much greater generality.
- Revisit associativity:



brackets are either nested or disjoint

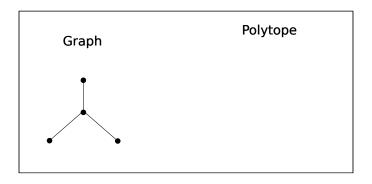
Key feature of associahedra: they are contractible.

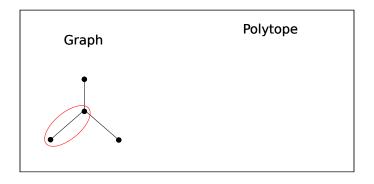
- ▶ I claim this feature is present in much greater generality.
- Revisit associativity:

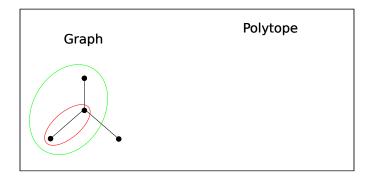


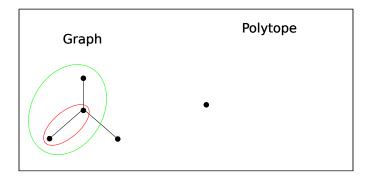
brackets are either nested or disjoint

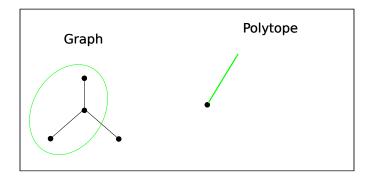
Lemma (W.) The space of bracketings of *any graph* is contractible, in fact it is a polytope.

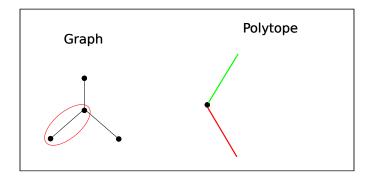


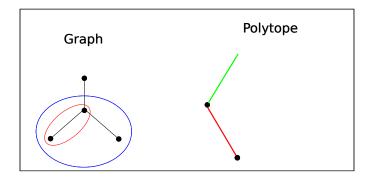


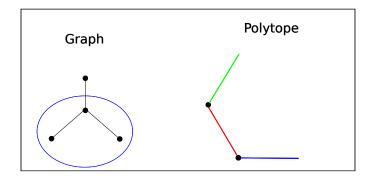


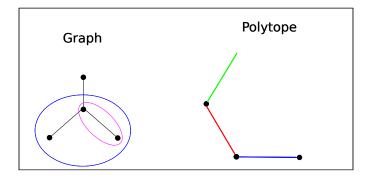


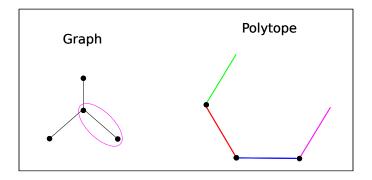


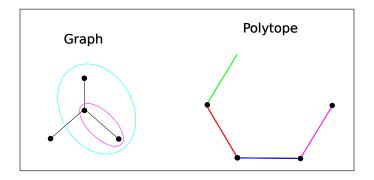


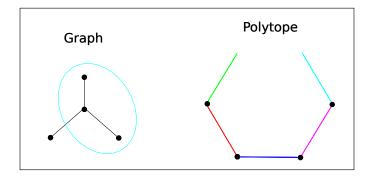


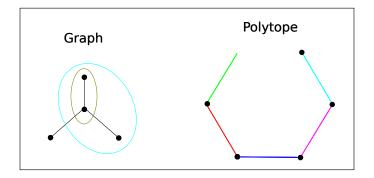


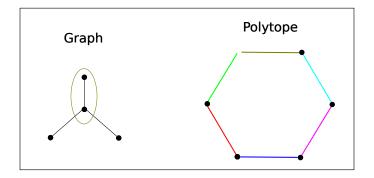


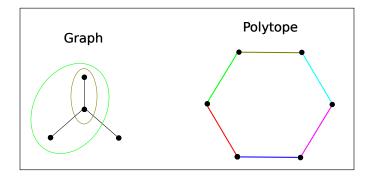


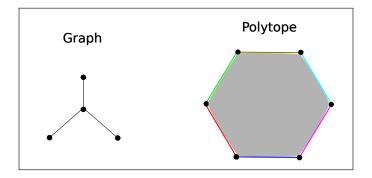


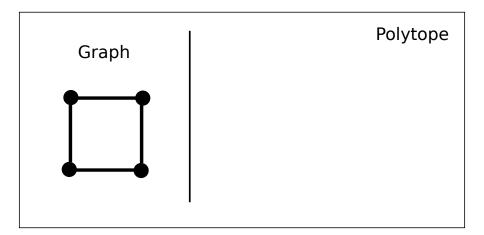


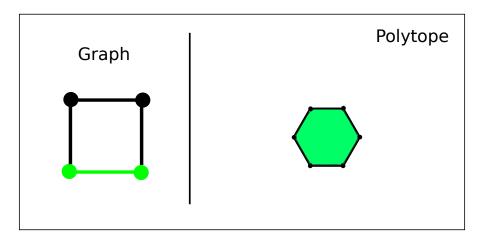


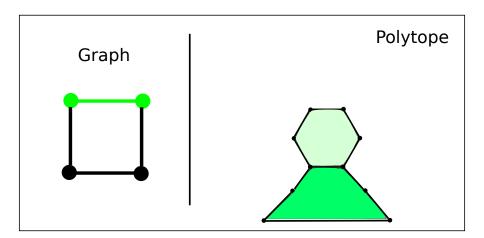


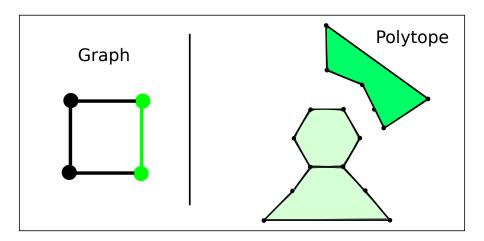


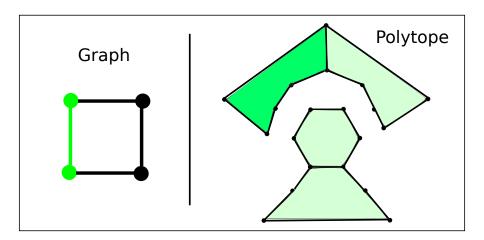


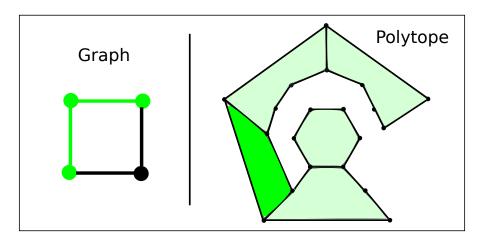


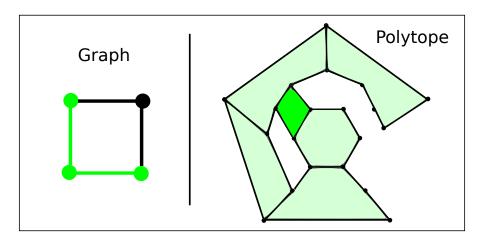


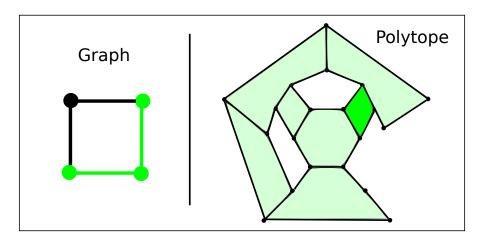


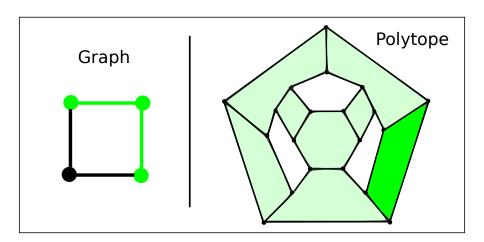


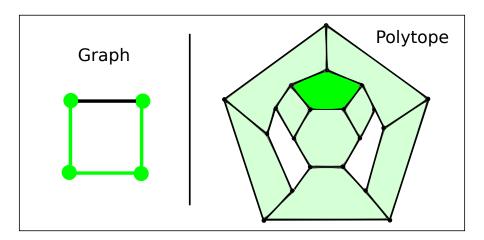


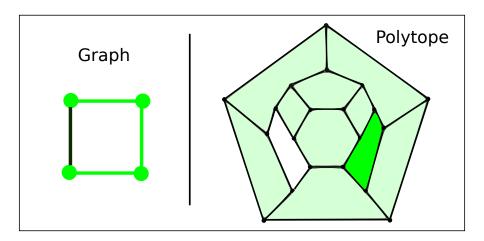


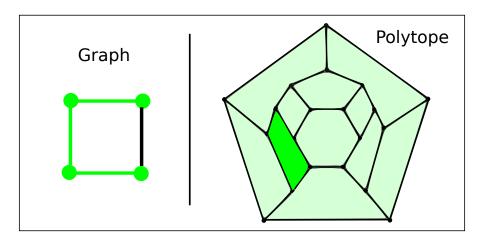




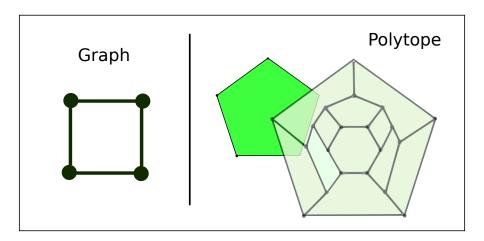




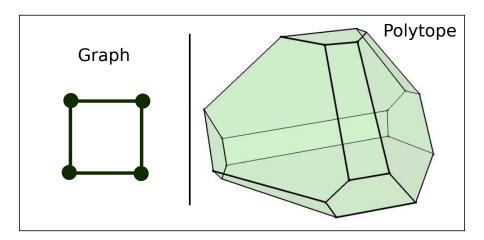




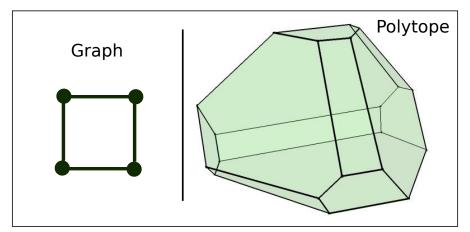




Example of a square graph.



Example of a square graph.



Let's call these polytopes Bracketohedra.

How do we use this generalization?

How do we use this generalization?

	then	
Algebraic structure	Associativity	
Combinatorics	Multiply along a line	
Polytopes	Associahedra	
Homotopy Transfer	via A_{∞} -algebras	
use to study	Topological spaces	

How do we use this generalization?

	then	now
Algebraic structure	Associativity	
Combinatorics	Multiply along a line	Multiply along a graph
Polytopes	Associahedra	Bracketohedra
Homotopy Transfer	via A_∞ -algebras	
use to study	Topological spaces	

How do we use this generalization?

	then	now
Algebraic structure	Associativity	
Combinatorics	Multiply along a line	Multiply along a graph
Polytopes	Associahedra	Bracketohedra
Homotopy Transfer	via A_{∞} -algebras	
use to study	Topological spaces	

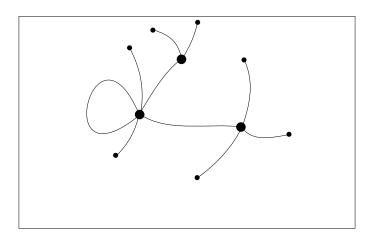
Present Goal: Fill in this table.

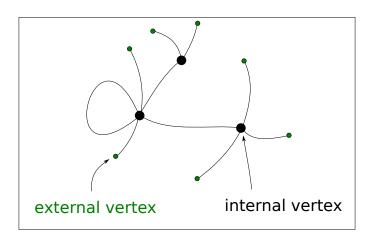
How do we use this generalization?

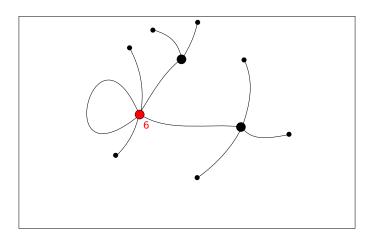
	then	now
Algebraic structure	Associativity	Modular Operad
Combinatorics	Multiply along a line	Multiply along a graph
Polytopes	Associahedra	Bracketohedra
Homotopy Transfer	via A_∞ -algebras	
use to study	Topological spaces	

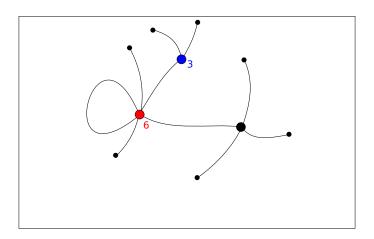
Present Goal: Fill in this table.

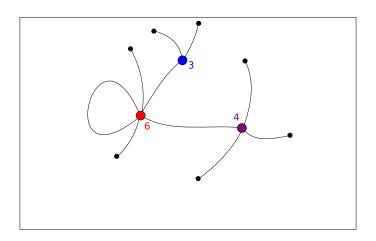
Informal **Definition:** A modular operad is a sequence of objects $(M_2, M_3, M_4, ...)$

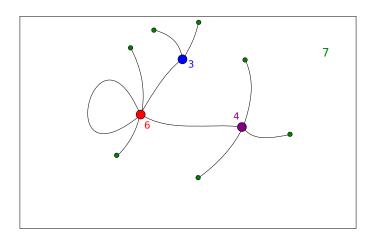


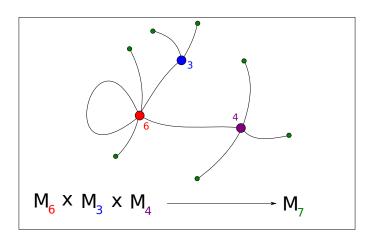


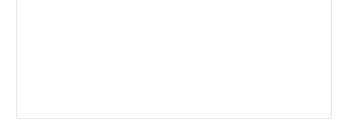


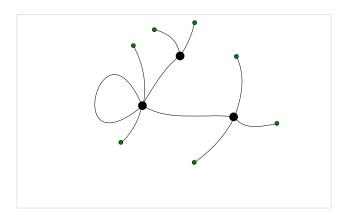


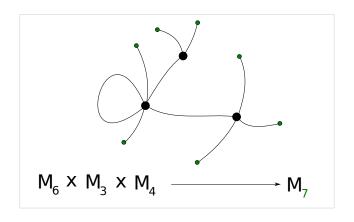


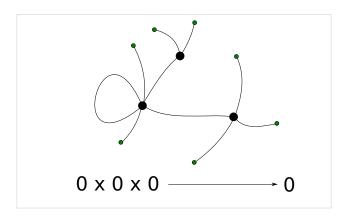


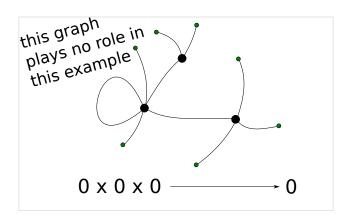




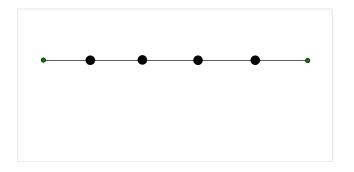




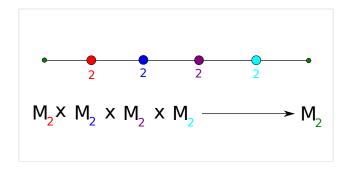




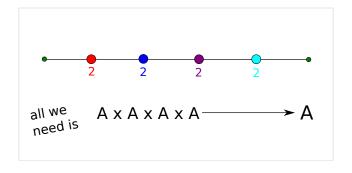
Let A be an associative algebra and define $(M_2, M_3, M_4, ...) = (A, 0, 0, ...)$



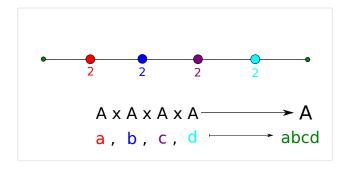
Let A be an associative algebra and define $(M_2, M_3, M_4, ...) = (A, 0, 0, ...)$



Let A be an associative algebra and define $(M_2, M_3, M_4, ...) = (A, 0, 0, ...)$

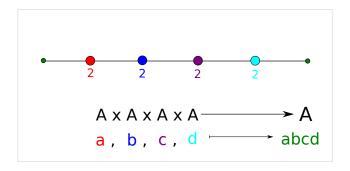


Let A be an associative algebra and define $(M_2, M_3, M_4, ...) = (A, 0, 0, ...)$

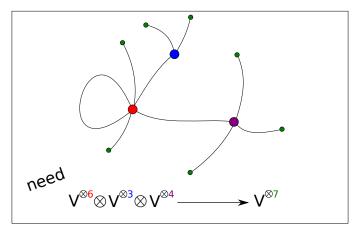


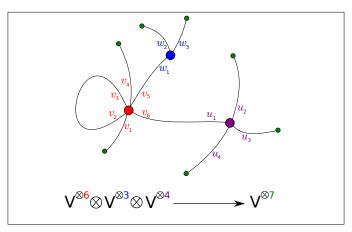
Let A be an associative algebra and define $(M_2, M_3, M_4, ...) = (A, 0, 0, ...)$

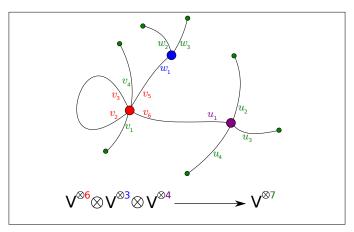
• The operations are trivial unless all internal vertices have valence 2.

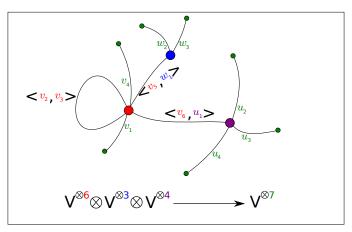


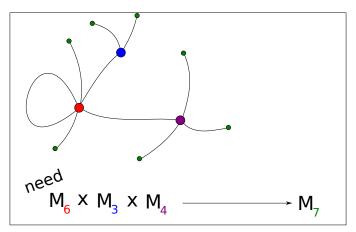
Modular operads generalize associativity.

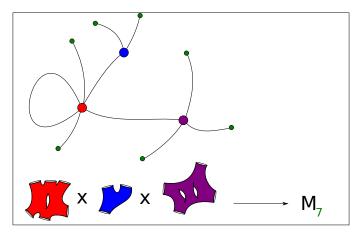


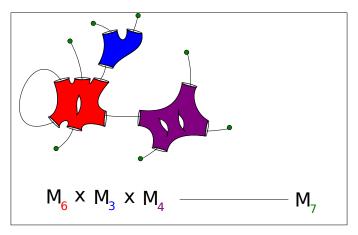


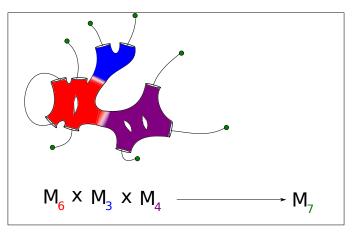




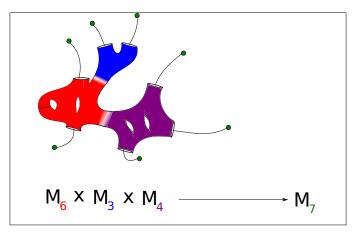




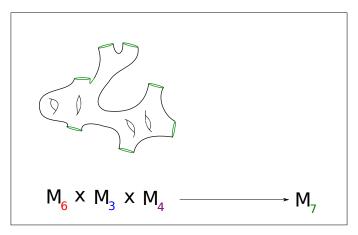




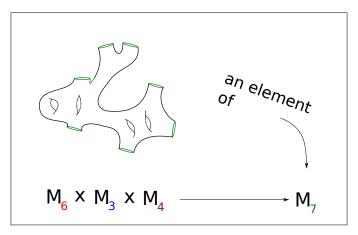
Surfaces: Let M_n be the set of compact, orientable surfaces with n boundary components.



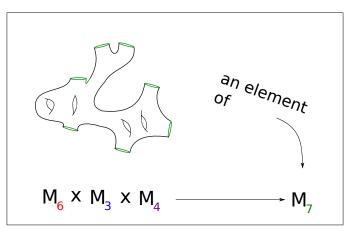
Surfaces: Let M_n be the set of compact, orientable surfaces with n boundary components.



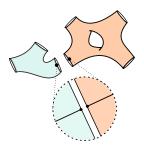
Surfaces: Let M_n be the set of compact, orientable surfaces with n boundary components.

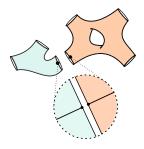


Surfaces: Let M_n be the set of compact, orientable surfaces with n boundary components.

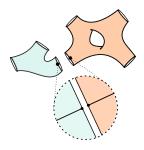


• Surfaces form a modular operad by gluing.

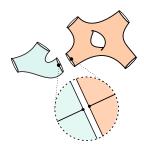




Moduli spaces of surfaces with boundary.



- Moduli spaces of surfaces with boundary.
- Deligne-Mumford compactifications of surfaces with punctures.



- Moduli spaces of surfaces with boundary.
- Deligne-Mumford compactifications of surfaces with punctures.
- Graph complexes...



- Moduli spaces of surfaces with boundary.
- Deligne-Mumford compactifications of surfaces with punctures.
- Graph complexes...

It's preferable to separate out the genus: $\mathcal{M} = \{\mathcal{M}_{g,n}\}.$

4 ロ ト 4 周 ト 4 三 ト 4 三 ト 9 Q (^

Back to the analogy

	then	now
Algebraic structure	Associativity	Modular Operad
Combinatorics	Multiply along a line	Multiply along a graph
Polytopes	Associahedra	Bracketohedra
Homotopy Transfer	via A_{∞} -algebras	
use to study	Topological spaces	

Present Goal: Fill in this table.

Back to the analogy

	then	now
Algebraic structure	Associativity	Modular Operad
Combinatorics	Multiply along a line	Multiply along a graph
Polytopes	Associahedra	Bracketohedra
Homotopy Transfer	via A_{∞} -algebras	theorem
use to study	Topological spaces	

Present Goal: Fill in this table.

Generalizing the classical A_{∞} story we have:

Generalizing the classical A_{∞} story we have:

Theorem (W.)

Every dg modular operad is quasi-isomorphic to a " A_{∞} -modular operad" structure on its homology.

Generalizing the classical A_{∞} story we have:

Theorem (W.)

Every dg modular operad is quasi-isomorphic to a " A_{∞} -modular operad" structure on its homology.

Proof.

• Encode modular operads as algebras over a *quadratic operad*.

Generalizing the classical A_{∞} story we have:

Theorem (W.)

Every dg modular operad is quasi-isomorphic to a " A_{∞} -modular operad" structure on its homology.

Proof.

• Encode modular operads as algebras over a quadratic operad. This requires using colored operads whose colors form not just a set but a groupoid.

Generalizing the classical A_{∞} story we have:

Theorem (W.)

Every dg modular operad is quasi-isomorphic to a " A_{∞} -modular operad" structure on its homology.

Proof.

- Encode modular operads as algebras over a quadratic operad. This requires using colored operads whose colors form not just a set but a groupoid.
- 2 Prove that the operad encoding modular operads is Koszul.

Generalizing the classical A_{∞} story we have:

Theorem (W.)

Every dg modular operad is quasi-isomorphic to a " A_{∞} -modular operad" structure on its homology.

Proof.

- Encode modular operads as algebras over a quadratic operad. This requires using colored operads whose colors form not just a set but a groupoid.
- Prove that the operad encoding modular operads is Koszul. This is where we use contractibility of bracketohedra.

Generalizing the classical A_{∞} story we have:

Theorem (W.)

Every dg modular operad is quasi-isomorphic to a " A_{∞} -modular operad" structure on its homology.

Proof.

- Encode modular operads as algebras over a quadratic operad. This requires using colored operads whose colors form not just a set but a groupoid.
- Prove that the operad encoding modular operads is Koszul. This is where we use contractibility of bracketohedra.
- Generalize classical Koszul duality theory from operads to groupoid colored operads.

	then	now
Algebraic structure	Associativity	Modular Operad
Combinatorics	Multiply along a line	Multiply along a graph
Polytopes	Associahedra	Bracketohedra
Homotopy Transfer	via A_{∞} -algebras	via A_{∞} - modular operads
use to study	Topological spaces	

	then	now
Algebraic structure	Associativity	Modular Operad
Combinatorics	Multiply along a line	Multiply along a graph
Polytopes	Associahedra	Bracketohedra
Homotopy Transfer	via A_{∞} -algebras	via A_{∞} - modular operads
use to study	Topological spaces	graph complexes

	then	now
Algebraic structure	Associativity	Modular Operad
Combinatorics	Multiply along a line	Multiply along a graph
Polytopes	Associahedra	Bracketohedra
Homotopy Transfer	via A_{∞} -algebras	via A_{∞} - modular operads
use to study	Topological spaces	graph complexes
how?	Massey Products	

	then	now
Algebraic structure	Associativity	Modular Operad
Combinatorics	Multiply along a line	Multiply along a graph
Polytopes	Associahedra	Bracketohedra
Homotopy Transfer	via A_{∞} -algebras	via A_{∞} - modular operads
use to study	Topological spaces	graph complexes
how?	Massey Products	Massey Products

Next time...

