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Last Time...

We looked at a chain complex GC built from graphs.
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Last Time...

Then we looked at a chain complex built from decorated graphs MGC.
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Last Time...

These chain complex each compute homology of interesting spaces.
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Last Time...

Today: indicate how they’re related...
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Last Time...

Today: indicate how they’re related via higher structures.
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Relation between GC and MGC

Rough idea: there is a map given by contracting cycles.
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Relation between GC and MGC

Theorem (W)

Cycle contraction gives an isomorphism of graded Sn-modules:

H(GC1,n) ∼=
⊕
r odd

H(MGC(1, n, r)).

Why Odd?

Corollary

gr0H
c
• (M1,n+1) ∼=

⊕
i

H4i (C (n,R3))
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Foreshadowing...

Recall Willwacher used the correspondence with grt1 to construct a family
of commutative graph homology classes σ2j+1

Compare this to the above isomorphism which involved contraction of odd
polygons...

α7

How could we use this to detect the wheel graph in L(2j + 1, 0)?
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Look at g > 1 case

The g = 1 story can be generalized:

Theorem

There is a short exact sequence of the form:

What is this acyclic complex?
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Look at g > 1 case
The g = 1 story can be generalized:

Theorem

There is a short exact sequence of the form:

0 → Ker(g , n) ↪→ acyclic
complex ↠ GCg ,n → 0

What is this acyclic complex?

d d

d =
∑

contraction of subgraphs.
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Started with edge contraction:

e

Would like to introduce “higher operations”:

d d
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Today’s questions

d d

What information do I need to retain when contracting subgraphs.

Why would variations on the graph complex construction be related?

Higher operations arise from an analogy

Associative Algebras :: Modular operads
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Recollection of A∞-algebras

Definition (Stasheff): The associahedron Kn is a polytope of dimension
n − 2 such that:

vertices = ways to parenthesize a string of n letters,

edges = strings of n letters missing one pair of parentheses,

faces = strings of n letters missing two pair of parentheses and so on,

adjacency is determined by adding parentheses.

Case n = 3:
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Recollection of A∞-algebras

Definition (Stasheff): The associahedron Kn is a polytope of dimension
n − 2 such that:

vertices = ways to parenthesize a string of n letters,

edges = strings of n letters missing one pair of parentheses,

faces = strings of n letters missing two pair of parentheses and so on,

adjacency is determined by adding parentheses.

Case n = 3:

(ab)c a(bc)
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Recollection of A∞-algebras

Example of K4.

String of 
4 letters

PolytopePolytope

abcd
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Recollection of A∞-algebras

Example of K4.

(abc)d

String of 
4 letters

PolytopePolytope

(abc)d
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Recollection of A∞-algebras

Example of K4.
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Recollection of A∞-algebras

Example of K4.

(ab)(cd)
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4 letters

PolytopePolytope
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Recollection of A∞-algebras

Example of K4.

ab(cd)

String of 
4 letters

PolytopePolytope
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Recollection of A∞-algebras

Example of K4.

a(b(cd))

String of 
4 letters

PolytopePolytope

a(b(cd))
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Recollection of A∞-algebras

Example of K4.

a(bcd)

String of 
4 letters

PolytopePolytope

a(bcd)
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Recollection of A∞-algebras

Example of K4.

a((bc)d)

String of 
4 letters

PolytopePolytope

a((bc)d)
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Recollection of A∞-algebras

Example of K4.

a(bc)d

String of 
4 letters

PolytopePolytope

a(bc)d
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Recollection of A∞-algebras

Example of K4.

(a(bc))d

String of 
4 letters

PolytopePolytope

(a(bc))d
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Recollection of A∞-algebras

Example of K4.

(ab)(cd)

a(b(cd))

a((bc)d)(a(bc))d

((ab)c)d

(ab)cd ab(cd)

a(bcd)

a(bc)d

(abc)d

String of 
4 letters

PolytopePolytope

abcd
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Associahedra

Example: K5

Example: K2 = •
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Associahedra

Example: K5

Example: K2 = •
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Associahedra encode A∞-algebras

Informal Definition:

An A∞ algebra is a chain complex A with a
compatible linear map A⊗n → A for every cell in Kn (for each n).

What is needed to specify an A∞-algebra?

K2

ab
need : A⊗2 → A of degree 0

K3 need : A⊗3 → A of degree 1

K4 need µ4 : A
⊗4 → A of degree 2
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Associahedra encode A∞-algebras

Informal Definition: An A∞ algebra is a chain complex A with a
compatible linear map A⊗n → A for every cell in Kn (for each n).
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⊗4 → A of degree 2
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Why A∞ algebras?

Theorem (Kadeishvili)

Let A be a dg associative algebra over a field of characteristic zero. There
exists an A∞ structure on H∗(A) such that A ∼ H∗(A) as A∞-algebras.

For example let A = C ∗(X ;Q) with the cup product. This is a finer
invariant than cohomology, H∗(X ;Q) until we add higher operations

µn : H
∗(A)⊗n → H∗−n+2(A).

For X simply connected, (H∗(A), µn) is a complete invariant of the
rational homotopy type.

We will call these higher operations “Massey products”.
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Associativity revisited

Key feature of associahedra: they are contractible.

▶ I claim this feature is present in much greater generality.

Revisit associativity:

a
abcd

b c d
=

"brackets"

a((bc)d) =

▶ brackets are either nested or disjoint

Lemma (W.) The space of bracketings of any graph is contractible,
in fact it is a polytope.
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Example of a square graph.

Graph
Polytope

Let’s call these polytopes Bracketohedra.
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An analogy

How do we use this generalization?

then

Algebraic structure Associativity

Combinatorics Multiply along a line

Polytopes Associahedra

Homotopy Transfer via A∞-algebras

use to study Topological spaces
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Modular operads.

Informal Definition: A modular operad is a sequence of objects
(M2,M3,M4, . . . )

and an algebraic operation for every graph:
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Modular operads.

Informal Definition: A modular operad is a sequence of objects
(M2,M3,M4, . . . ) and an algebraic operation for every graph:
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x M3 M4
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Examples of modular operads

Let A be an associative algebra and define (M2,M3,M4, ...) = (A, 0, 0, ...)

The operations are trivial unless all internal vertices have valence 2.
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Examples of modular operads

Let A be an associative algebra and define (M2,M3,M4, ...) = (A, 0, 0, ...)

The operations are trivial unless all internal vertices have valence 2.

A

2 2 2 2

A x A x A x A

a , b , c , d abcd

Modular operads generalize associativity.
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Examples of modular operads

Let V be a vector space and V ⊗ V
⟨−,−⟩−→ Q an inner product.

Define (M2,M3,M4, ...) = (V⊗2,V⊗3,V⊗4, ...).
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Examples of modular operads

Surfaces: Let Mn be the set of compact, orientable surfaces with n
boundary components.

Surfaces form a modular operad by gluing.
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Other examples of modular operads:

Moduli spaces of surfaces with boundary.

Deligne-Mumford compactifications of surfaces with punctures.

Graph complexes...

It’s preferable to separate out the genus: M = {Mg ,n}.
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Back to the analogy

then now

Algebraic structure Associativity Modular Operad

Combinatorics Multiply along a line Multiply along a graph

Polytopes Associahedra Bracketohedra

Homotopy Transfer via A∞-algebras

use to study Topological spaces

Present Goal: Fill in this table.
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Homotopy Transfer Theorem for Modular Operads.

Generalizing the classical A∞ story we have:

Theorem (W.)

Every dg modular operad is quasi-isomorphic to a “A∞-modular operad”
structure on its homology.

Proof.
1 Encode modular operads as algebras over a quadratic operad. This

requires using colored operads whose colors form not just a set but a
groupoid.

2 Prove that the operad encoding modular operads is Koszul. This is
where we use contractibility of bracketohedra.

3 Generalize classical Koszul duality theory from operads to groupoid
colored operads.
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Next time...

d d
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