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Last time...

An analogy:
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now
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Polytopes

Associahedra
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Homotopy Transfer

via Asc-algebras

via Aso- modular operads
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Last time...

An analogy:
then now
Algebraic structure || Associativity Modular Operad
Combinatorics || Multiply along a line | Multiply along a graph
Polytopes || Associahedra Bracketohedra
Homotopy Transfer || via Asc-algebras via Ao~ modular operads

Associative algebras : As-algebras

@ [ <—> one edged compositions
@ i, +— n—1 edged compositions called “Massey products”.

Let's package these higher operations using the bar construction.
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Analogy continues... the bar construction

Start with a group G, let's construct a topological space.
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Analogy continues... the bar construction

Start with a group G, let’s construct a topological space.

Another path in my space is:

b
O
U

B(G) := ([J(6" x a")/ ~
Analogously, for A an associative algebra:

B(A) = (#A%",d)
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Bar Construction for Modular Operads

Input is a modular operad M.
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Bar Construction for Modular Operads
Input is a modular operad M.

Theorem (Getzler-Kapranov)

FT?(M) ~ M
o = = = DA




Graph complexes via the Feynman transform

Write FT(M) for the Bar Construction,
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Graph complexes via the Feynman transform

Write FT(M) for the Bar Construction, AKA “Feynman transform”.

Lemma

The modular operad GC is in the image of the Feynman transform.
Namely GC = FT(Com) for a Modular operad

Q ifg=0
Com(g, n) = {o ifg >0

o We write “Com” for the commutative operad.

@ Operads are a special type of modular operad in which all higher
genus spaces are 0.

e For any operad O, we can consider the O-labeled graph complex
FT(O).
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Another example of O.

Complimentary to the operad Com is the operad Lie.
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Another example of O.

Complimentary to the operad Com is the operad Lie.

Lie bracket is a bilinear map, denoted [—, —], satisfying
> antisymmetry: [a, b] = —[b, ]

» Jacobi identity: [[a, b], c] + [[c, a], b] + [[b, ], a] = 0.
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Another example of O.
Complimentary to the operad Com is the operad Lie.

Lie bracket is a bilinear map, denoted [—, —], satisfying
» antisymmetry: [a, b] = —[b, 4]

» Jacobi identity: [[a, b], c] + [[c, a], b] + [[b, ], a] = 0.

Define Lie(n) = span of Lie words on n letters.
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Another example of O.
Complimentary to the operad Com is the operad Lie.
Lie bracket is a bilinear map, denoted [—, —], satisfying
> antisymmetry: [a, b] = —[b, a]
» Jacobi identity: [[a, b], c] + [[c, a], b] + [[b, c], a] = 0.
Define Lie(n) = span of Lie words on n letters.
» Lie(2) is dimension 1,  basis [a, b].
» Lie(3) is dimension 2,  basis [[a, b], c], [[c, a], b].

» Lie(n) is dimension (n — 1)L
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Com vs. Lie Operads

e Lie(n) is dimension (n — 1)!
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Com vs. Lie Operads
e Lie(n) is dimension (n — 1)!

Consider the power series:

N ST
n=1 ’

—log(1 — x)
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Lie vs Commutative words

o flie(x) = —log(1l — x)
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Lie vs Commutative words
@ flie(x) = —log(1l — x)

Define Com(n) = span of commutative and associative words on n
letters.

Com(2) is dimension 1, basis ab.

Com(3) is dimension 1,

O D = = Do
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Lie vs Commutative words
@ flie(x) = —log(1l — x)

Define Com(n) = span of commutative and associative words on n
letters.

Com(2) is dimension 1, basis ab.
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Lie vs Commutative words

o fL,'e(X) = —/og(l — X)

Define Com(n) = span of commutative and associative words on n
letters.

Com(2) is dimension 1, basis ab.
Com(3) is dimension 1, basis abc.
Com(n) is dimension 1.

Consider the analogous power series:
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o fL,'e(X) = —/og(l — X)

Define Com(n) = span of commutative and associative words on n
letters.

Com(2) is dimension 1, basis ab.
Com(3) is dimension 1, basis abc.
Com(n) is dimension 1.
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Lie vs Commutative words

o fL,'e(X) = —/og(l — X)

Define Com(n) = span of commutative and associative words on n
letters.

Com(2) is dimension 1, basis ab.
Com(3) is dimension 1, basis abc.
Com(n) is dimension 1.

Consider the analogous power series:

fcom (X ) =

. dim(Com(n)) , <= X"
$= dim(Com(n), _ 5~

n! !
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Lie vs Commutative words

o fL,'e(X) = —/og(l — X)

Define Com(n) = span of commutative and associative words on n
letters.

Com(2) is dimension 1, basis ab.
Com(3) is dimension 1, basis abc.
Com(n) is dimension 1.
Consider the analogous power series:
. dim(Com(n n = x" N
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A consequence of Koszul duality

o Lie = flje(x) = —log(1 — x)

e Com = feom(x) =€*—1
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A consequence of Koszul duality

o Lie = flje(x) = —log(1 — x)

e Com = feom(x) =€*—1

f[_,'e @) —fcom(x) = —/og(l — (—eX + 1)) = —X

fcom © —fL,'e(X) = elog(l—x) —1=—x

This is a consequence of Koszul duality.
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A consequence of Koszul duality

o Lie = flje(x) = —log(1 — x)
e Com = feom(x) =€*—1

fLie © _fCom(X) = _/Og(l - (_ex + 1)) ==X

fcom © _fLie(X) = eIOg(l_X) —1=—x

This is a consequence of Koszul duality.

@ Upshot: if | didn't know the dimension of Lie(n), Koszul duality
would tell me how to find it (invert a power series).
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Back to Graph Complexes
A few facts:

@ Com and Lie form operads that are related by Koszul duality.
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@ Com and Lie form operads that are related by Koszul duality.
terms are 0.

@ Com and Lie can be considered modular operads, whose higher genus

e We recover GC via FT(Com)
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Back to Graph Complexes

A few facts:

@ Com and Lie form operads that are related by Koszul duality.

@ Com and Lie can be considered modular operads, whose higher genus
terms are 0.

e We recover GC via FT(Com)

@ The homology of FT(Lie) is also interesting,
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Back to Graph Complexes

A few facts:
@ Com and Lie form operads that are related by Koszul duality.

@ Com and Lie can be considered modular operads, whose higher genus
terms are 0.

e We recover GC via FT(Com)

@ The homology of FT(Lie) is also interesting, computes homology of
certain automorphism groups: H(l ', ») = H(FT(Lie)(g, n))
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Back to Graph Complexes

A few facts:
@ Com and Lie form operads that are related by Koszul duality.

@ Com and Lie can be considered modular operads, whose higher genus
terms are 0.

e We recover GC via FT(Com)

@ The homology of FT(Lie) is also interesting, computes homology of
certain automorphism groups: H(l ', ») = H(FT(Lie)(g, n))

Question: How are these two variations of graph homology related?
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Back to Graph Complexes

A few facts:
@ Com and Lie form operads that are related by Koszul duality.

@ Com and Lie can be considered modular operads, whose higher genus
terms are 0.

e We recover GC via FT(Com)

@ The homology of FT(Lie) is also interesting, computes homology of
certain automorphism groups: H(l ', ») = H(FT(Lie)(g, n))

Question: How are these two variations of graph homology related?

We can give an answer using the A-analog of the Feynman transform.
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A Picture of the A, Feynman transform

Input is an Ay-modular operad O.
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A Picture of the A, Feynman transform

Input is an Ay-modular operad O.
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A Picture of the A, Feynman transform

Input is an Ay-modular operad O.

M(1,4)

M(4,8)
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A Picture of the A, Feynman transform

Input is an Ay-modular operad O.

M(1,4)

M(4,8)
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A Picture of the A, Feynman transform

Input is an Ay-modular operad O.

M(1,4)

M(4,8)
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A Picture of the A, Feynman transform

Input is an Ay-modular operad O.

M(1,4)

M(5,6)

=] = = E A
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A Picture of the A, Feynman transform

Input is an Ay,-modular operad O

M(1,4)
M(2,4)

d=0?

M(0,5)
=] = = E A
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A Picture of the A, Feynman transform

Input is an Ay-modular operad O.

Ben Ward
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Homotopy Transfer Theorem for Modular Operads.

Generalizing the classical Ay, story we have:
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Homotopy Transfer Theorem for Modular Operads.

Generalizing the classical Ay, story we have:
Theorem (W.)

Every dg modular operad is quasi-isomorphic to an As.-modular operad
structure on its homology.
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Homotopy Transfer Theorem for Modular Operads.

Generalizing the classical Ay, story we have:

Theorem (W.)

Every dg modular operad is quasi-isomorphic to an As.-modular operad
structure on its homology.

How do we use this theorem?

e H.(I) is the homology of FT(Lie),
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Homotopy Transfer Theorem for Modular Operads.

Generalizing the classical Ay, story we have:

Theorem (W.)

Every dg modular operad is quasi-isomorphic to an As.-modular operad
structure on its homology.

How do we use this theorem?
e H.(I) is the homology of FT(Lie),
so as Ao, modular operads H,(I') ~ FT(Lie).
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Homotopy Transfer Theorem for Modular Operads.

Generalizing the classical Ay, story we have:

Theorem (W.)

Every dg modular operad is quasi-isomorphic to an As.-modular operad
structure on its homology.

How do we use this theorem?
e H.(I) is the homology of FT(Lie),
so as Ax, modular operads H, (') ~ FT(Lie).
@ The FT can be generalized to As,-modular operads (call it ft),
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Theorem (W.)

Every dg modular operad is quasi-isomorphic to an As.-modular operad
structure on its homology.

How do we use this theorem?
e H.(I) is the homology of FT(Lie),
so as Ao, modular operads H,(I') ~ FT(Lie).

@ The FT can be generalized to As,-modular operads (call it ft),
so ft(H.(I)) ~ FT?(Lie).

Ben Ward Introduction to Graph Complexes - 111 Fall 2025 12/26



Homotopy Transfer Theorem for Modular Operads.

Generalizing the classical Ay, story we have:

Theorem (W.)

Every dg modular operad is quasi-isomorphic to an As.-modular operad
structure on its homology.

How do we use this theorem?
e H.(I) is the homology of FT(Lie),
so as Ax, modular operads H, (') ~ FT(Lie).
@ The FT can be generalized to As,-modular operads (call it ft),
so ft(H.(I)) ~ FT?(Lie).

@ But the modular operad Lie is 0 in higher genus — just an operad,
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Homotopy Transfer Theorem for Modular Operads.

Generalizing the classical Ay, story we have:

Theorem (W.)

Every dg modular operad is quasi-isomorphic to an As.-modular operad
structure on its homology.

How do we use this theorem?
e H.(I) is the homology of FT(Lie),
so as Ax, modular operads H, (') ~ FT(Lie).
@ The FT can be generalized to As,-modular operads (call it ft),
so ft(H.(I)) ~ FT?(Lie).
@ But the modular operad Lie is 0 in higher genus — just an operad,
thus each complex FT(H.(I"))(g, n) with g > 1 is acyclic.
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Now add Massey products

View H(I') = H(FT(Lie)), viewed with its Massey products.
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Now add Massey products

View H(I') = H(FT(Lie)), viewed with its Massey products.
Corollary (W.)

Let g > 0 and consider the chain complex ft(H(T'))(g, n)
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Now add Massey products

View H(I') = H(FT(Lie)), viewed with its Massey products.
Corollary (W.)

Let g > 0 and consider the chain complex ft(H(T'))(g, n)
e HTT = acyclic, and
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Now add Massey products

View H(I') = H(FT(Lie)), viewed with its Massey products.
Corollary (W.)

Let g > 0 and consider the chain complex ft(H(T'))(g, n)
e HTT = acyclic, and

e Koszul duality = contains ft(Com)(g, n) as a subcomplex.

v e
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Now add Massey products

View H(I') = H(FT(Lie)), viewed with its Massey products.
Corollary (W.)

Let g > 0 and consider the chain complex ft(H(I'))(g, n)
e HTT = acyclic, and

e Koszul duality = contains ft(Com)(g, n) as a subcomplex.

d d
@ o o
Thus every homology class ft(Com)(g, n) is a represented in
ft(H(T))(g, n).

Ben Ward
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Now add Massey products

View H(I') = H(FT(Lie)), viewed with its Massey products.
Corollary (W.)

Let g > 0 and consider the chain complex ft(H(I'))(g, n)
e HTT = acyclic, and

e Koszul duality = contains ft(Com)(g, n) as a subcomplex.

d d
@ o o
Thus every homology class ft(Com)(g, n) is a represented in
ft(H('))(g, n), via Massey products.

Ben Ward

Introduction to Graph Complexes - 111 Fall 2025
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The acyclic graph complex — ft(H(I))

Our graphs have:

=) = = = Q>
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The acyclic graph complex — ft(H(I))

Our graphs have:
@ edges
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The acyclic graph complex — ft(H(I))

Our graphs have:
@ edges,

o legs
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The acyclic graph complex — ft(H(I))

Our graphs have:
@ edges,
o legs,

@ two types of vertices:
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The acyclic graph complex — ft(H(I))

O

Our graphs have:

@ edges,

o legs,

@ two types of vertices: Red
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The acyclic graph complex — ft(H(I))

O
O

Our graphs have:
@ edges,

o legs,

@ two types of vertices: Red and Gray
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The acyclic graph complex — ft(H(I))

Our graphs have:
@ edges,

o legs,

@ two types of vertices: Red and Gray.
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What type of graphs?

We stipulate:
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What type of graphs?

We stipulate:

o Gray vertices must be stable.
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What type of graphs?

We stipulate:

o Gray vertices must be stable.

@ No parallel edges between gray vertices.
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What type of graphs?

We stipulate:

o Gray vertices must be stable.

@ No parallel edges between gray vertices
@ No loops/tadpoles at gray vertices.
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o Gray vertices must be stable.
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What type of graphs?

We stipulate:
o Gray vertices must be stable.
@ No parallel edges between gray vertices.

@ No loops/tadpoles at gray vertices.
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What type of graphs?

We label:
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What type of graphs?

We label:

@ Red vertices by a positive integer (genus).
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What type of igraphs?

We label:
@ Red vertices by a positive integer (genus).
o Legs bijectively by {1,...,n}.
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What type of graphs?

We label:
@ Red vertices by a positive integer (genus).
o Legs bijectively by {1,...,n}.
e Gray vertices by Com(n) = Ho([z,n) = Q.
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What type of graphs?

We label:
@ Red vertices by a positive integer (genus).
o Legs bijectively by {1,...,n}.
e Gray vertices by Com(n) = Ho([z,n) = Q.

@ Red vertices by higher homology classes.

Ben Ward Introduction to Graph Complexes - 111 Fall 2025 16 /26



Lie graph homology

Let X; , be a wedge of g circles and n pointed intervals
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Lie graph homology

Let X; , be a wedge of g circles and n pointed intervals

Define I'g , = mo(auty(Xg,n))-
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Lie graph homology

Let X; , be a wedge of g circles and n pointed intervals

Define Iy , = mo(auty(Xg,n))-
Theorem

Conant-Kassabov-Hatcher-Vogtmann tell us:

H.(I') := {H«(Tg,n)} forms a modular operad isomorphic to H,(FT(Lie)) J
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Lie graph homology

Let X; , be a wedge of g circles and n pointed intervals

Define g, = mo(auty(Xg,n)).
Conant-Kassabov-Hatcher-Vogtmann tell us:

Theorem
H.(I') := {H«(Tg,n)} forms a modular operad isomorphic to H,(FT(Lie)) J

The S, module H;(I'1 ) is irreducible.
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Lie graph homology

Let X; , be a wedge of g circles and n pointed intervals

Define g, = mo(auty(Xg,n)).
Conant-Kassabov-Hatcher-Vogtmann tell us:

Theorem
H.(I') := {H«(Tg,n)} forms a modular operad isomorphic to H,(FT(Lie)) J

The S, module H;(I'1 ) is irreducible.

@ It's zero if / is odd.
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Lie graph homology

Let X; , be a wedge of g circles and n pointed intervals

Define g, = mo(auty(Xg,n)).
Conant-Kassabov-Hatcher-Vogtmann tell us:

Theorem
H.(I') := {H«(Tg,n)} forms a modular operad isomorphic to H,(FT(Lie)) J

The S, module H;(I'1 ) is irreducible.
@ It's zero if [ is odd.

° H2j(r1,2j+1) is the alternating representation.
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The acyclic graph complex — ft(H(I))
fe(H(r

To each graph ~, form a graded vector space

EB[ & A
red vFrtlces

of v

on())]
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The acyclic graph complex — ft(H(I))
fe(H(r

To each graph ~, form a graded vector space

EB[ & A
red vFrtlces

of v

on())]

=] = = E A
Ben Ward Introduction to Graph Complexes - |11



Differential

The differential @ on ft(H(I'))(g, n) has the following form.
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Differential

@ Starting from an homogeneous element

The differential @ on ft(H(I'))(g, n) has the following form.
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Differential

The differential @ on ft(H(I'))(g, n) has the following form.

@ Starting from an homogeneous element choose a connected subgraph.
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Differential

o Contract this subgraph

The differential 9 on ft(H(I'))(g, n) has the following form.

.

/

Hi(T2.4) ® Ho(To.4) ® Ho(To3) — ...
O «Fr«=r><=» E HaAC



Differential

The differential 9 on ft(H(I'))(g, n) has the following form.

o Contract this subgraph, keeping track of the total genus.

Hi(T2.4) ® Ho(To.4) ® Ho(To3) — ...
O «Fr «=> = fac



Differential

The differential @ on ft(H(I'))(g, n) has the following form.

@ The result will index a term in the differential.

H,-(F274) ® Ho(r074) ® Ho(r0,3) — ...
oy <@ =) «= DA



Differential

The differential 9 on ft(H(I'))(g, n) has the following form.

@ The result will index a term in the differential...

which class
in H(E ©)
goes here?

Hi(T2.4) ® Ho(To.4) ® Ho(To3) — ...
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Differential

The differential @ on ft(H(I'))(g, n) has the following form.
@ The result will index a term in the differential...

which class
in H(E o)
goes here?

H;i(T2,4) ® Ho(T0,4) ® Ho(To;3) = Hiy2(l3,5)
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Differential

The differential 9 on ft(H(I'))(g, n) has the following form.

@ The result will index a term in the differential...

which class
in H(E ©)
goes here?

Hi(T2.4) © Ho(T0.4) ® Ho(To3) 2 Hia(T35)

. a Massey product.
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The short exact sequence

Let R be the span of graphs having at least one red vertex.

For each (g, n) with g > 1 there is a short exact sequence
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The short exact sequence

Let R be the span of graphs having at least one red vertex.
For each (g, n) with g > 1 there is a short exact sequence

0— R(g,n) —

acyclic

complex

— GCgp =0
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The short exact sequence

Let R be the span of graphs having at least one red vertex.
For each (g, n) with g > 1 there is a short exact sequence

0— R(g,n) — Ci%’;',fx —GCpp— 0
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The short exact sequence

Let R be the span of graphs having at least one red vertex.
For each (g, n) with g > 1 there is a short exact sequence

acyclic
complex

0 — R(g,n) < —+GCp— 0

AR
L/
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The short exact sequence

Let R be the span of graphs having at least one red vertex.
For each (g, n) with g > 1 there is a short exact sequence

0— R(g,n) —

acyclic

complex
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The short exact sequence

Let R be the span of graphs having at least one red vertex.
For each (g, n) with g > 1 there is a short exact sequence

acyclic
complex

d
P

AR
L/

0 — R(g,n) < —+GCp— 0
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An example of this d.
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An example of this d.

o Willwacher used the correspondence with grt; to construct a family of
commutative graph homology classes 03j1

LR K

Ben Ward Introduction to Graph Complexes - 111 Fall 2025 21/26



An example of this d.

o Willwacher used the correspondence with grt; to construct a family of
commutative graph homology classes 03j1

< X K

@ Recall (Conant-Hatcher-Kassabov-Vogtmann) Haj(I'1 2j+1) is the
alternating representation. Fix a generator apji1 € Hoj(I12j41).
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An example of this d.

o Willwacher used the correspondence with grt; to construct a family of
commutative graph homology classes 03j1

< X K

@ Recall (Conant-Hatcher-Kassabov-Vogtmann) Haj(I'1 2j+1) is the
alternating representation. Fix a generator apji1 € Hoj(I12j41).

These classes are related by the connecting homomorphism.
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Lemma (W.)

stable 2j + 1-gon.

The class a1 is in the image of the Massey product associated to the

=] = = E A
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Lemma (W.)

stable 2j + 1-gon.

For example when j = 3:

The class a1 is in the image of the Massey product associated to the

Ho(T03)®" — Hg(l1.7)
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Lemma (W.)

stable 2j + 1-gon

The class a1 is in the image of the Massey product associated to the
For example when j = 3:

Ho(lo3)®

—> H6(F1 7

e
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Lemma (W.)

stable 2j + 1-gon

The class a1 is in the image of the Massey product associated to the
For example when j = 3:

Ho(lo3)®

—> H6(F1 7
How could we use this to detect the wheel graph in R(2j + 1,0)?
Ben Ward
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Lemma (W.)

The class apjy1 is in the image of the Massey product associated to the
stable 2j + 1-gon.

For example when j = 3:
Ho(T0,3)®" — He(M17)

e

How could we use this to detect the wheel graph in R(2j + 1,0)?
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Lemma (W.)

The class 41 Is in the image of the Massey product associated to the
stable 2j + 1-gon.

For example when j = 3:
Ho(Fo0,3)®" — He(M1,7)

.

How could we use this to detect the wheel graph in R(2j + 1,0)?
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Lemma (W.)

stable 2j + 1-gon.

The class a1 Is in the image of the Massey product associated to the
For example when j = 3:

Ho(T03)®" — He(T'1,7)
How could we use this to detect the wheel graph in R(2j + 1,0)?

e« ©
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Lemma (W.)

The class apjy1 is in the image of the Massey product associated to the
stable 2j + 1-gon.

For example when j = 3:
Ho(T0,3)®" — He(M17)

e

How could we use this to detect the wheel graph in R(2j + 1,0)?
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Lemma (W.)

The class 41 Is in the image of the Massey product associated to the
stable 2j + 1-gon.

For example when j = 3:
Ho(Fo0,3)®" — He(M1,7)

.

How could we use this to detect the wheel graph in R(2j + 1,0)?
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Lemma (W.)

The class cpjy1 is in the image of the Massey product associated to the
stable 2j + 1-gon.

For example when j = 3:
Ho(T03)®" — Hg(l1.7)

o

How could we use this to detect the wheel graph in R(2j + 1,0)?
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Define 62,1 € R(2j + 1,0) as follows:

o = = E E Al
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Define 62,1 € R(2j + 1,0) as follows:

Ben Ward

@ Needs to be labeled by a class in Hg(I'1,11).
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Define 62,1 € R(2j + 1,0) as follows:

e Start az € He(1,7).

Ben Ward
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Define 62,1 € R(2j + 1,0) as follows:

e Compose with a copy of Hy(Ip3) for each tadpole.
O 3 = = Ha



Define 62,1 € R(2j + 1,0) as follows:

@ The result lands in the Hg(I'1 11),
=] = = = o




Define 62,1 € R(2j + 1,0) as follows:

@ The result lands in the Hg(I"'111), a space of dimension 1260...
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Define 6141 € R(2j + 1,0) as follows:

@ The result lands in the Hg(I'1,11), a space of dimension 1260... but
this class actually spans Hg(I'1,11) aut(6)-
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Define 6141 € R(2j + 1,0) as follows:

@ The result lands in the Hg(I'1,11), a space of dimension 1260... but
this class actually spans Hg(I'1,11) aut(6)-

@ This is a statement about the irreducible decomposition of
S11
ReSS3><(52254)(V5,16)'
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Define 6141 € R(2j + 1,0) as follows:

@ The result lands in the Hg(I'1,11), a space of dimension 1260... but
this class actually spans Hg(I'1,11) aut(6)-

@ This is a statement about the irreducible decomposition of
S . .
Ress§§(52154)(v5,16)v and this works for all j.
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Detecting wheel graphs

Theorem (W.)

With the expansion differential [d(62j+1)] = 02j+1.
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Detecting wheel graphs

Theorem (W.)

With the expansion differential [d(62j+1)] = 02j+1. Dually, with
contraction differential the wheel graph is not a boundary.
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Detecting wheel graphs

Theorem (W.)

With the expansion differential [d(62j+1)] = 02j+1. Dually, with
contraction differential the wheel graph is not a boundary. l.e. the wheel
graph represents a non-trivial class in GC5.

@ This result is known, but here required no knowledge of grt;.
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Koszulity results

Contractibility of braketohedra implies:
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Koszulity results

Contractibility of braketohedra implies:
Theorem (W.)

The “operad” encoding modular operads is Koszul.
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Koszulity results

Contractibility of braketohedra implies:
Theorem (W.)
The “operad” encoding modular operads is Koszul. J

Need to encode using a quadratic presentation.

@ This can’t be done with a classical (colored) operad,

[} = = =
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Koszulity results

Contractibility of braketohedra implies:
Theorem (W.)

The “operad” encoding modular operads is Koszul. J

Need to encode using a quadratic presentation.
@ This can’t be done with a classical (colored) operad,

@ Can be done using groupoid colors.
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This is the last slide

Bigger picture

{ Lie graph homology

(untwisted) } = {

Commutative graph homology

(R-twisted) }

=] = = E Al
Ben Ward Introduction to Graph Complexes - |11



This is the last slide

Bigger picture

{ Lie graph homology

yod

Commutative graph homology
(untwisted)
We can consider Massey products for any homology modular operad.
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Lie graph homology o Commutative graph homology
(untwisted) (R-twisted)
We can consider Massey products for any homology modular operad.

@ Other flavors of graph homology.

» Commutative in, Lie out.
» Associative operad.
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Lie graph homology o Commutative graph homology
(untwisted) (R-twisted)
We can consider Massey products for any homology modular operad.

@ Other flavors of graph homology.

» Commutative in, Lie out.
» Associative operad.

° Hy( Mg )
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Lie graph homology o Commutative graph homology
(untwisted) (R-twisted)

We can consider Massey products for any homology modular operad.
@ Other flavors of graph homology.

» Commutative in, Lie out.
» Associative operad.

° H(Mg,n) = ft(HM))(g, n) ~ H(Mg.n).
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We can consider Massey products for any homology modular operad.

@ Other flavors of graph homology.

» Commutative in, Lie out.
» Associative operad.

° H(Mg,n) = ft(HM))(g, n) ~ H(Mg.n).
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We can consider Massey products for any homology modular operad.

@ Other flavors of graph homology.

» Commutative in, Lie out.
» Associative operad.

° H(Mg,n) = ft(HM))(g, n) ~ H(Mg.n).

Questions? Answers?

Ben Ward Introduction to Graph Complexes - 111 Fall 2025 26 /26



This is the last slide

Bigger picture
Lie graph homology o Commutative graph homology
(untwisted) (R-twisted)
We can consider Massey products for any homology modular operad.

@ Other flavors of graph homology.

» Commutative in, Lie out.
» Associative operad.

° H(Mg,n) = ft(HM))(g, n) ~ H(Mg.n).

Questions? Answers?

benward@bgsu.edu
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This is the last slide

Bigger picture
Lie graph homology o Commutative graph homology
(untwisted) (R-twisted)
We can consider Massey products for any homology modular operad.

@ Other flavors of graph homology.

» Commutative in, Lie out.
» Associative operad.

° H(Mg,n) = ft(HM))(g, n) ~ H(Mg.n).

Questions? Answers?
benward@bgsu.edu

Thank you!
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