Introduction to Graph Complexes - III

Ben Ward

Bowling Green State University

IISER – Kolkata November 2025

An analogy:

	then	now
Algebraic structure	Associativity	Modular Operad
Combinatorics	Multiply along a line	Multiply along a graph
Polytopes	Associahedra	Bracketohedra
Homotopy Transfer	via A_{∞} -algebras	via A_{∞} - modular operads

An analogy:

	then	now
Algebraic structure	Associativity	Modular Operad
Combinatorics	Multiply along a line	Multiply along a graph
Polytopes	Associahedra	Bracketohedra
Homotopy Transfer	via A_{∞} -algebras	via A_{∞} - modular operads

An analogy:

	then	now
Algebraic structure	Associativity	Modular Operad
Combinatorics	Multiply along a line	Multiply along a graph
Polytopes	Associahedra	Bracketohedra
Homotopy Transfer	via A_∞ -algebras	via A_{∞} - modular operads

Associative algebras : A_{∞} -algebras

An analogy:

	then	now
Algebraic structure	Associativity	Modular Operad
Combinatorics	Multiply along a line	Multiply along a graph
Polytopes	Associahedra	Bracketohedra
Homotopy Transfer	via A_∞ -algebras	via A_{∞} - modular operads

Associative algebras : A_{∞} -algebras

::

An analogy:

	then	now
Algebraic structure	Associativity	Modular Operad
Combinatorics	Multiply along a line	Multiply along a graph
Polytopes	Associahedra	Bracketohedra
Homotopy Transfer	via A_∞ -algebras	via A_{∞} - modular operads

Associative algebras : A_{∞} -algebras

::

modular operads : A_{∞} -modular operads.

• $\mu_2 \longleftrightarrow$ one edged compositions

An analogy:

	then	now
Algebraic structure	Associativity	Modular Operad
Combinatorics	Multiply along a line	Multiply along a graph
Polytopes	Associahedra	Bracketohedra
Homotopy Transfer	via A_∞ -algebras	via A_{∞} - modular operads

Associative algebras : A_{∞} -algebras

::

modular operads : A_{∞} -modular operads.

• $\mu_2 \longleftrightarrow$ one edged compositions

An analogy:

	then	now
Algebraic structure	Associativity	Modular Operad
Combinatorics	Multiply along a line	Multiply along a graph
Polytopes	Associahedra	Bracketohedra
Homotopy Transfer	via A_∞ -algebras	via A_{∞} - modular operads

Associative algebras : A_{∞} -algebras

::

- $\mu_2 \longleftrightarrow$ one edged compositions
- $\mu_n \longleftrightarrow n-1$ edged compositions

An analogy:

	then	now
Algebraic structure	Associativity	Modular Operad
Combinatorics	Multiply along a line	Multiply along a graph
Polytopes	Associahedra	Bracketohedra
Homotopy Transfer	via A_∞ -algebras	via A_{∞} - modular operads

Associative algebras : A_{∞} -algebras

::

- $\mu_2 \longleftrightarrow$ one edged compositions
- $\mu_n \longleftrightarrow n-1$ edged compositions

An analogy:

	then	now
Algebraic structure	Associativity	Modular Operad
Combinatorics	Multiply along a line	Multiply along a graph
Polytopes	Associahedra	Bracketohedra
Homotopy Transfer	via A_∞ -algebras	via A_{∞} - modular operads

Associative algebras : A_{∞} -algebras

::

- $\mu_2 \longleftrightarrow$ one edged compositions
- $\mu_n \longleftrightarrow n-1$ edged compositions called "Massey products".

An analogy:

	then	now
Algebraic structure	Associativity	Modular Operad
Combinatorics	Multiply along a line	Multiply along a graph
Polytopes	Associahedra	Bracketohedra
Homotopy Transfer	via A_{∞} -algebras	via A_{∞} - modular operads

Associative algebras : A_{∞} -algebras

::

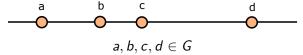
- $\mu_2 \longleftrightarrow$ one edged compositions
- $\mu_n \longleftrightarrow n-1$ edged compositions called "Massey products".

Let's package these higher operations using the bar construction.

Start with a group G, let's construct a topological space.

Start with a group G, let's construct a topological space.

A point in my space is:

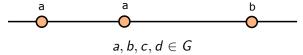


Start with a group G, let's construct a topological space.

Another point in my space is:

Start with a group G, let's construct a topological space.

Another point in my space is:



Start with a group G, let's construct a topological space.

Start with a group G, let's construct a topological space.

Start with a group G, let's construct a topological space.

Start with a group G, let's construct a topological space.

Start with a group G, let's construct a topological space.

Start with a group G, let's construct a topological space.

Start with a group G, let's construct a topological space.

Start with a group G, let's construct a topological space.

Start with a group G, let's construct a topological space.

Start with a group G, let's construct a topological space.

Start with a group G, let's construct a topological space.

Start with a group G, let's construct a topological space.

Start with a group G, let's construct a topological space.

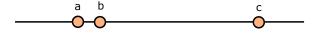
Start with a group G, let's construct a topological space.

Start with a group G, let's construct a topological space.

Start with a group G, let's construct a topological space.

Start with a group G, let's construct a topological space.

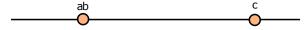
Start with a group G, let's construct a topological space.



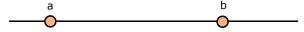
Start with a group G, let's construct a topological space.

Start with a group G, let's construct a topological space.

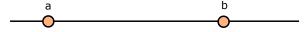
Start with a group G, let's construct a topological space.



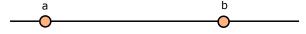
Start with a group G, let's construct a topological space.



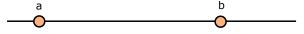
Start with a group G, let's construct a topological space.



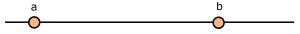
Start with a group G, let's construct a topological space.



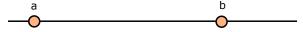
Start with a group G, let's construct a topological space.



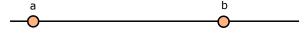
Start with a group G, let's construct a topological space.



Start with a group G, let's construct a topological space.

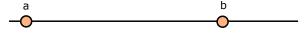


Start with a group G, let's construct a topological space.

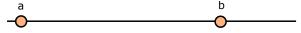


Start with a group G, let's construct a topological space.

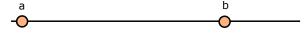
Start with a group G, let's construct a topological space.



Start with a group G, let's construct a topological space.

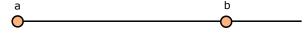


Start with a group G, let's construct a topological space.



Start with a group G, let's construct a topological space.

Start with a group G, let's construct a topological space.



Start with a group G, let's construct a topological space.

Start with a group G, let's construct a topological space.

$$\mathsf{B}(G) := (\prod (G^n \times \Delta^n)) / \sim$$

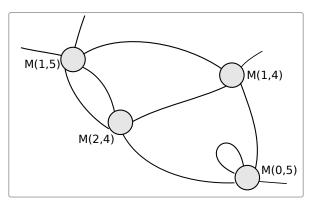
Start with a group G, let's construct a topological space.

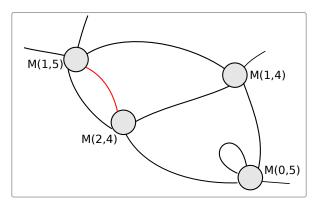
Another path in my space is:

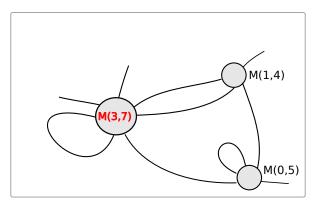
$$\mathsf{B}(G) := (\prod (G^n \times \Delta^n)) / \sim$$

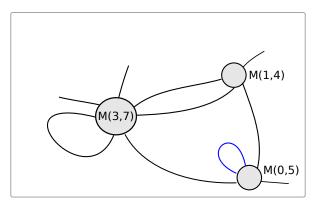
Analogously, for A an associative algebra:

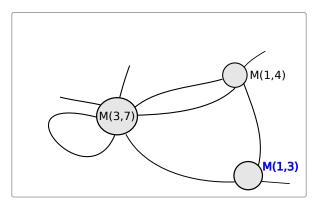
$$\mathsf{B}(A) = (\oplus A^{\otimes n}, d)$$

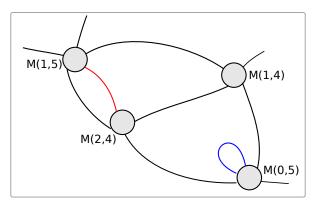


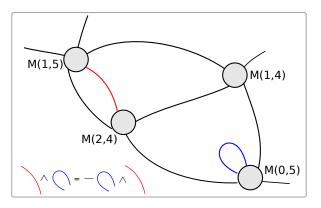




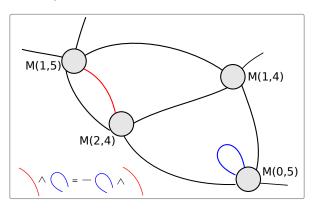








Input is a modular operad M.



Theorem (Getzler-Kapranov)

 $FT^2(M) \sim M$

Write FT(M) for the Bar Construction,

Write FT(M) for the Bar Construction, AKA "Feynman transform".

Write FT(M) for the Bar Construction, AKA "Feynman transform".

Lemma

The modular operad GC is in the image of the Feynman transform.

Write FT(M) for the Bar Construction, AKA "Feynman transform".

Lemma

The modular operad GC is in the image of the Feynman transform. Namely GC = FT(Com) for a Modular operad

$$Com(g, n) = \begin{cases} \mathbb{Q} & \text{if } g = 0 \\ 0 & \text{if } g > 0 \end{cases}$$

• We write "Com" for the commutative operad.

Write FT(M) for the Bar Construction, AKA "Feynman transform".

Lemma

The modular operad GC is in the image of the Feynman transform. Namely GC = FT(Com) for a Modular operad

$$Com(g, n) = \begin{cases} \mathbb{Q} & \text{if } g = 0 \\ 0 & \text{if } g > 0 \end{cases}$$

- We write "Com" for the commutative operad.
- Operads are a special type of modular operad in which all higher genus spaces are 0.

Write FT(M) for the Bar Construction, AKA "Feynman transform".

Lemma

The modular operad GC is in the image of the Feynman transform. Namely GC = FT(Com) for a Modular operad

$$Com(g, n) = \begin{cases} \mathbb{Q} & \text{if } g = 0 \\ 0 & \text{if } g > 0 \end{cases}$$

- We write "Com" for the commutative operad.
- *Operads* are a special type of modular operad in which all higher genus spaces are 0.
- For any operad \mathcal{O} , we can consider the \mathcal{O} -labeled graph complex $\mathsf{FT}(\mathcal{O})$.

Complimentary to the operad Com is the operad Lie.

Complimentary to the operad Com is the operad Lie.

Lie bracket is a bilinear map, denoted [-,-], satisfying

Complimentary to the operad Com is the operad Lie.

Lie bracket is a bilinear map, denoted [-,-], satisfying

ightharpoonup antisymmetry: [a,b]=-[b,a]

Complimentary to the operad Com is the operad Lie.

Lie bracket is a bilinear map, denoted [-,-], satisfying

- ▶ antisymmetry: [a, b] = -[b, a]
- ▶ Jacobi identity: [[a, b], c] + [[c, a], b] + [[b, c], a] = 0.

Complimentary to the operad Com is the operad Lie.

Lie bracket is a bilinear map, denoted [-,-], satisfying

- antisymmetry: [a, b] = -[b, a]
- ▶ Jacobi identity: [[a, b], c] + [[c, a], b] + [[b, c], a] = 0.

Define Lie(n) = span of Lie words on n letters.

Complimentary to the operad Com is the operad Lie.

Lie bracket is a bilinear map, denoted [-,-], satisfying

- antisymmetry: [a, b] = -[b, a]
- ▶ Jacobi identity: [[a, b], c] + [[c, a], b] + [[b, c], a] = 0.

Define Lie(n) = span of Lie words on n letters.

► Lie(2) is dimension 1,

Another example of \mathcal{O} .

Complimentary to the operad Com is the operad Lie.

Lie bracket is a bilinear map, denoted [-,-], satisfying

- antisymmetry: [a, b] = -[b, a]
- ▶ Jacobi identity: [[a, b], c] + [[c, a], b] + [[b, c], a] = 0.

Define Lie(n) = span of Lie words on n letters.

- ▶ Lie(2) is dimension 1, basis [a, b].
- ► *Lie*(3) is dimension 2,

Another example of \mathcal{O} .

Complimentary to the operad Com is the operad Lie.

Lie bracket is a bilinear map, denoted [-,-], satisfying

- antisymmetry: [a, b] = -[b, a]
- ▶ Jacobi identity: [[a, b], c] + [[c, a], b] + [[b, c], a] = 0.

Define Lie(n) = span of Lie words on n letters.

- ▶ Lie(2) is dimension 1, basis [a, b].
- ► *Lie*(3) is dimension 2,

Another example of \mathcal{O} .

Complimentary to the operad Com is the operad Lie.

Lie bracket is a bilinear map, denoted [-,-], satisfying

- ▶ antisymmetry: [a, b] = -[b, a]
- ► Jacobi identity: [[a, b], c] + [[c, a], b] + [[b, c], a] = 0.

Define Lie(n) = span of Lie words on n letters.

- ▶ Lie(2) is dimension 1, basis [a, b].
- ► Lie(3) is dimension 2, basis [[a, b], c], [[c, a], b].
- ▶ Lie(n) is dimension (n-1)!.

• Lie(n) is dimension (n-1)!

• Lie(n) is dimension (n-1)!

• Lie(n) is dimension (n-1)!

$$f_{Lie}(x) = \sum_{n=1}^{\infty} \frac{dim(Lie(n))}{n!} x^n$$

• Lie(n) is dimension (n-1)!

$$f_{Lie}(x) = \sum_{n=1}^{\infty} \frac{dim(Lie(n))}{n!} x^n = \sum_{n=1}^{\infty} \frac{x^n}{n}$$

• Lie(n) is dimension (n-1)!

$$f_{Lie}(x) = \sum_{n=1}^{\infty} \frac{dim(Lie(n))}{n!} x^n = \sum_{n=1}^{\infty} \frac{x^n}{n} = -log(1-x)$$

•
$$f_{Lie}(x) = -log(1-x)$$

• $f_{Lie}(x) = -log(1-x)$

Define Com(n) = span of commutative and associative words on n letters.

• $f_{Lie}(x) = -log(1-x)$

Define Com(n) = span of commutative and associative words on n letters.

Com(2) is dimension 1,

• $f_{Lie}(x) = -log(1-x)$

Define Com(n) = span of commutative and associative words on n letters.

Com(2) is dimension 1, basis ab.

Com(3) is dimension 1,

• $f_{Lie}(x) = -log(1-x)$

Define Com(n) = span of commutative and associative words on n letters.

Com(2) is dimension 1, basis ab.

Com(3) is dimension 1, basis abc.

• $f_{Lie}(x) = -log(1-x)$

Define Com(n) = span of commutative and associative words on n letters.

Com(2) is dimension 1, basis ab.

Com(3) is dimension 1, basis abc.

Com(n) is dimension 1.

• $f_{Lie}(x) = -log(1-x)$

Define Com(n) = span of commutative and associative words on n letters.

Com(2) is dimension 1, basis ab.

Com(3) is dimension 1, basis abc.

Com(n) is dimension 1.

$$f_{Com}(x) = \sum_{n=1}^{\infty} \frac{\dim(Com(n))}{n!} x^n$$

• $f_{Lie}(x) = -log(1-x)$

Define Com(n) = span of commutative and associative words on n letters.

Com(2) is dimension 1, basis ab.

Com(3) is dimension 1, basis abc.

Com(n) is dimension 1.

$$f_{Com}(x) = \sum_{n=1}^{\infty} \frac{dim(Com(n))}{n!} x^n = \sum_{n=1}^{\infty} \frac{x^n}{n!}$$

• $f_{Lie}(x) = -log(1-x)$

Define Com(n) = span of commutative and associative words on n letters.

Com(2) is dimension 1, basis ab.

Com(3) is dimension 1, basis abc.

Com(n) is dimension 1.

$$f_{Com}(x) = \sum_{n=1}^{\infty} \frac{dim(Com(n))}{n!} x^n = \sum_{n=1}^{\infty} \frac{x^n}{n!} = e^x - 1$$

- Lie $\implies f_{Lie}(x) = -log(1-x)$
- Com $\implies f_{Com}(x) = e^x 1$

- Lie $\implies f_{Lie}(x) = -log(1-x)$
- Com $\implies f_{Com}(x) = e^x 1$

$$f_{Lie} \circ -f_{Com}(x)$$

- Lie $\implies f_{Lie}(x) = -log(1-x)$
- Com $\implies f_{Com}(x) = e^x 1$

$$f_{Lie} \circ -f_{Com}(x) = -log(1 - (-e^x + 1))$$

- Lie $\implies f_{Lie}(x) = -log(1-x)$
- Com $\implies f_{Com}(x) = e^x 1$

$$f_{Lie} \circ -f_{Com}(x) = -log(1 - (-e^x + 1)) = -x$$

- Lie $\implies f_{Lie}(x) = -log(1-x)$
- Com $\implies f_{Com}(x) = e^x 1$

$$f_{Lie} \circ -f_{Com}(x) = -log(1 - (-e^x + 1)) = -x$$

$$f_{Com} \circ -f_{Lie}(x)$$

- Lie $\implies f_{Lie}(x) = -log(1-x)$
- Com $\implies f_{Com}(x) = e^x 1$

$$f_{Lie} \circ -f_{Com}(x) = -log(1 - (-e^x + 1)) = -x$$

$$f_{Com} \circ -f_{Lie}(x) = e^{log(1-x)} - 1$$

- Lie $\implies f_{Lie}(x) = -log(1-x)$
- Com $\implies f_{Com}(x) = e^x 1$

$$f_{Lie} \circ -f_{Com}(x) = -log(1 - (-e^x + 1)) = -x$$

$$f_{Com} \circ -f_{Lie}(x) = e^{log(1-x)} - 1 = -x$$

This is a consequence of Koszul duality.

- Lie $\implies f_{Lie}(x) = -log(1-x)$
- Com $\implies f_{Com}(x) = e^x 1$

$$f_{Lie} \circ -f_{Com}(x) = -log(1 - (-e^x + 1)) = -x$$

$$f_{Com} \circ -f_{Lie}(x) = e^{log(1-x)} - 1 = -x$$

This is a consequence of Koszul duality.

• Upshot: if I didn't know the dimension of Lie(n), Koszul duality would tell me how to find it (invert a power series).

A few facts:

• Com and Lie form operads that are related by Koszul duality.

- Com and Lie form operads that are related by Koszul duality.
- Com and Lie can be considered modular operads, whose higher genus terms are 0.

- Com and Lie form operads that are related by Koszul duality.
- Com and Lie can be considered modular operads, whose higher genus terms are 0.
- We recover GC via FT(Com)

- Com and Lie form operads that are related by Koszul duality.
- Com and Lie can be considered modular operads, whose higher genus terms are 0.
- We recover GC via FT(Com)
- The homology of FT(Lie) is also interesting,

- Com and Lie form operads that are related by Koszul duality.
- Com and Lie can be considered modular operads, whose higher genus terms are 0.
- We recover GC via FT(Com)
- The homology of FT(Lie) is also interesting, computes homology of certain automorphism groups: $H(\Gamma_{g,n}) = H(FT(Lie)(g,n))$

A few facts:

- Com and Lie form operads that are related by Koszul duality.
- Com and Lie can be considered modular operads, whose higher genus terms are 0.
- We recover GC via FT(Com)
- The homology of FT(Lie) is also interesting, computes homology of certain automorphism groups: $H(\Gamma_{g,n}) = H(FT(Lie)(g,n))$

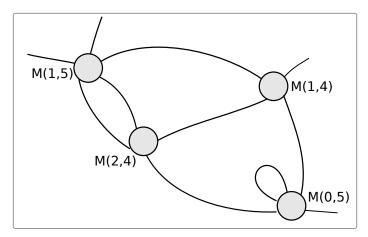
Question: How are these two variations of graph homology related?

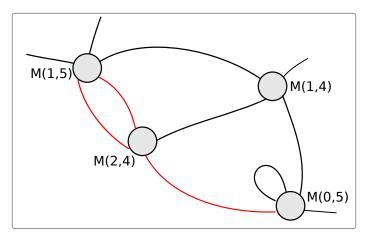
A few facts:

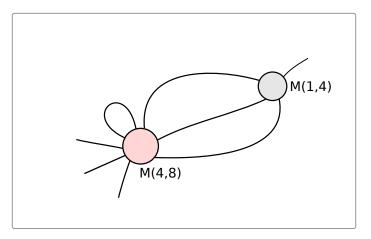
- Com and Lie form operads that are related by Koszul duality.
- Com and Lie can be considered modular operads, whose higher genus terms are 0.
- We recover GC via FT(Com)
- The homology of FT(Lie) is also interesting, computes homology of certain automorphism groups: $H(\Gamma_{g,n}) = H(FT(Lie)(g,n))$

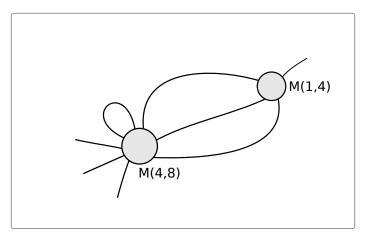
Question: How are these two variations of graph homology related?

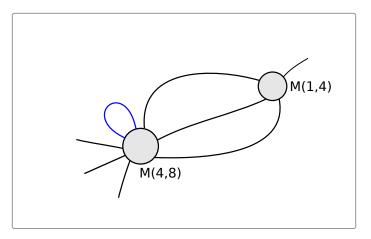
We can give an answer using the A_{∞} -analog of the Feynman transform.

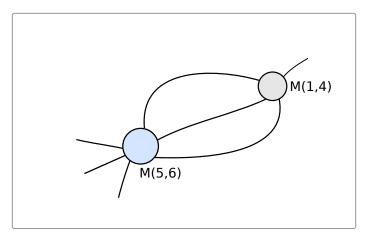


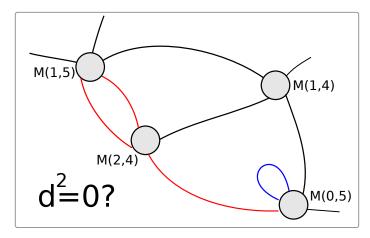


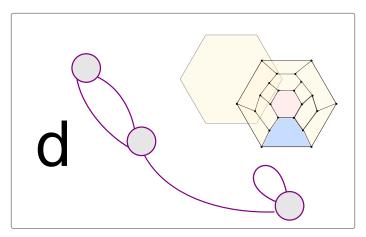












Generalizing the classical A_{∞} story we have:

Generalizing the classical A_{∞} story we have:

Theorem (W.)

Every dg modular operad is quasi-isomorphic to an A_{∞} -modular operad structure on its homology.

Generalizing the classical A_{∞} story we have:

Theorem (W.)

Every dg modular operad is quasi-isomorphic to an A_{∞} -modular operad structure on its homology.

How do we use this theorem?

• $H_*(\Gamma)$ is the homology of FT(Lie),

Generalizing the classical A_{∞} story we have:

Theorem (W.)

Every dg modular operad is quasi-isomorphic to an A_{∞} -modular operad structure on its homology.

How do we use this theorem?

• $H_*(\Gamma)$ is the homology of FT(Lie), so as A_{∞} modular operads $H_*(\Gamma) \sim FT(Lie)$.

Generalizing the classical A_{∞} story we have:

Theorem (W.)

Every dg modular operad is quasi-isomorphic to an A_{∞} -modular operad structure on its homology.

- $H_*(\Gamma)$ is the homology of FT(Lie), so as A_{∞} modular operads $H_*(\Gamma) \sim FT(Lie)$.
- The FT can be generalized to A_{∞} -modular operads (call it ft),

Generalizing the classical A_{∞} story we have:

Theorem (W.)

Every dg modular operad is quasi-isomorphic to an A_{∞} -modular operad structure on its homology.

- $H_*(\Gamma)$ is the homology of FT(Lie), so as A_{∞} modular operads $H_*(\Gamma) \sim FT(Lie)$.
- The FT can be generalized to A_{∞} -modular operads (call it ft), so $\operatorname{ft}(H_*(\Gamma)) \sim \operatorname{FT}^2(Lie)$.

Generalizing the classical A_{∞} story we have:

Theorem (W.)

Every dg modular operad is quasi-isomorphic to an A_{∞} -modular operad structure on its homology.

- $H_*(\Gamma)$ is the homology of FT(Lie), so as A_{∞} modular operads $H_*(\Gamma) \sim FT(Lie)$.
- The FT can be generalized to A_{∞} -modular operads (call it ft), so $\operatorname{ft}(H_*(\Gamma)) \sim \operatorname{FT}^2(Lie)$.
- But the modular operad Lie is 0 in higher genus just an operad,

Generalizing the classical A_{∞} story we have:

Theorem (W.)

Every dg modular operad is quasi-isomorphic to an A_{∞} -modular operad structure on its homology.

- $H_*(\Gamma)$ is the homology of FT(Lie), so as A_{∞} modular operads $H_*(\Gamma) \sim FT(Lie)$.
- The FT can be generalized to A_{∞} -modular operads (call it ft), so $\operatorname{ft}(H_*(\Gamma)) \sim \operatorname{FT}^2(Lie)$.
- But the modular operad Lie is 0 in higher genus just an operad, thus each complex $FT(H_*(\Gamma))(g, n)$ with $g \ge 1$ is acyclic.

View $H(\Gamma) = H(FT(Lie))$, viewed with its Massey products.

View $H(\Gamma) = H(FT(Lie))$, viewed with its Massey products.

Corollary (W.)

Let g > 0 and consider the chain complex $\operatorname{ft}(H(\Gamma))(g, n)$

View $H(\Gamma) = H(FT(Lie))$, viewed with its Massey products.

Corollary (W.)

Let g > 0 and consider the chain complex $ft(H(\Gamma))(g, n)$

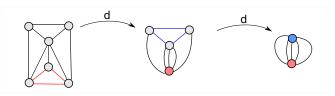
HTT ⇒ acyclic, and

View $H(\Gamma) = H(FT(Lie))$, viewed with its Massey products.

Corollary (W.)

Let g > 0 and consider the chain complex $\operatorname{ft}(H(\Gamma))(g, n)$

- HTT ⇒ acyclic, and
- Koszul duality \Rightarrow contains ft(Com)(g, n) as a subcomplex.

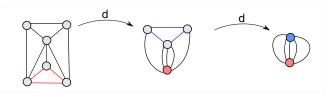


View $H(\Gamma) = H(FT(Lie))$, viewed with its Massey products.

Corollary (W.)

Let g > 0 and consider the chain complex $\operatorname{ft}(H(\Gamma))(g, n)$

- HTT ⇒ acyclic, and
- Koszul duality \Rightarrow contains ft(Com)(g, n) as a subcomplex.



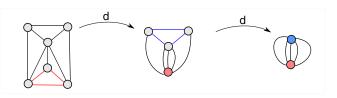
Thus every homology class ft(Com)(g, n) is a represented in $ft(H(\Gamma))(g, n)$,

View $H(\Gamma) = H(FT(Lie))$, viewed with its Massey products.

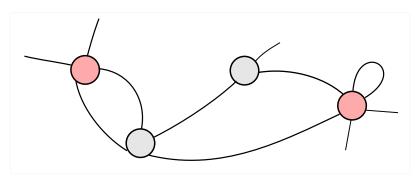
Corollary (W.)

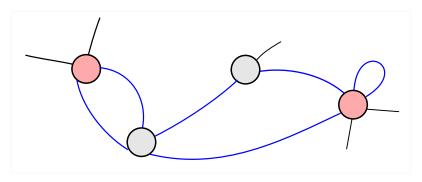
Let g > 0 and consider the chain complex $ft(H(\Gamma))(g, n)$

- HTT ⇒ acyclic, and
- Koszul duality \Rightarrow contains ft(Com)(g, n) as a subcomplex.



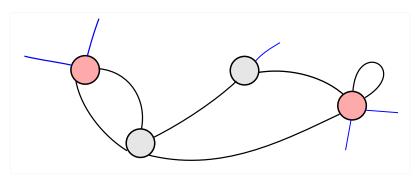
Thus every homology class $\operatorname{ft}(\operatorname{Com})(g,n)$ is a represented in $\operatorname{ft}(H(\Gamma))(g,n)$, via Massey products.



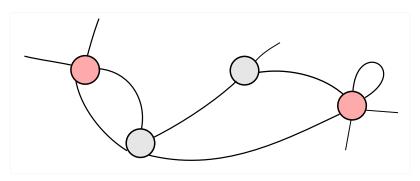


Our graphs have:

edges



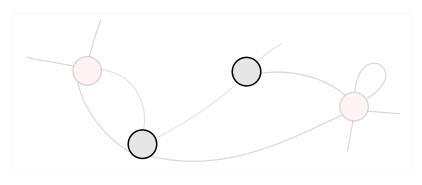
- edges,
- legs



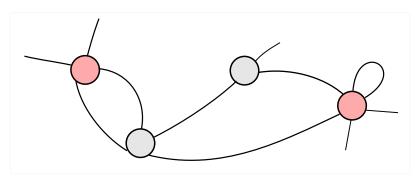
- edges,
- legs,
- two types of vertices:



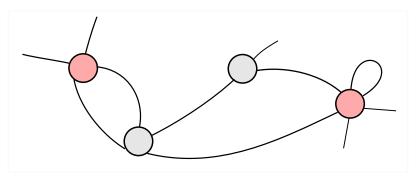
- edges,
- legs,
- two types of vertices: Red

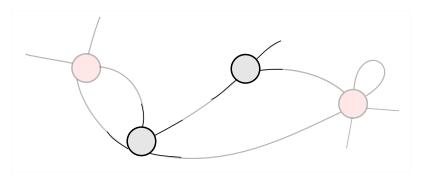


- edges,
- legs,
- two types of vertices: Red and Gray.



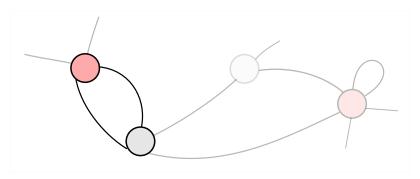
- edges,
- legs,
- two types of vertices: Red and Gray.





We stipulate:

• Gray vertices must be stable.

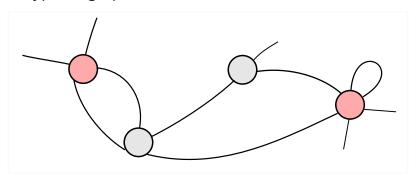


- Gray vertices must be stable.
- No parallel edges between gray vertices.

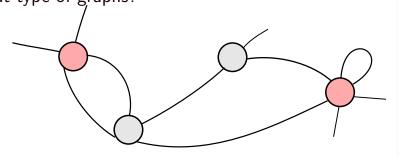


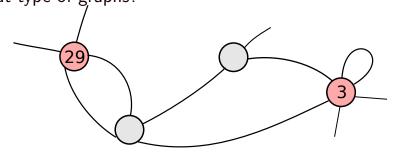
- Gray vertices must be stable.
- No parallel edges between gray vertices.
- No loops/tadpoles at gray vertices.

- Gray vertices must be stable.
- No parallel edges between gray vertices.
- No loops/tadpoles at gray vertices.



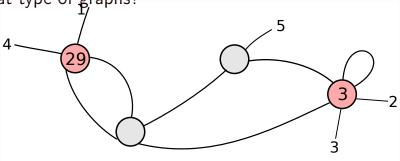
- Gray vertices must be stable.
- No parallel edges between gray vertices.
- No loops/tadpoles at gray vertices.



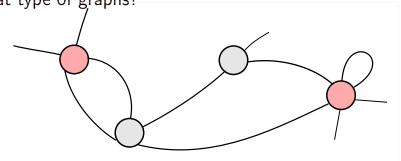


We label:

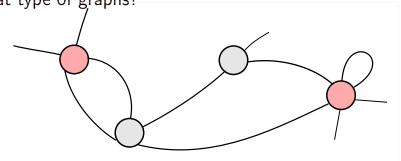
• Red vertices by a positive integer (genus).



- Red vertices by a positive integer (genus).
- Legs bijectively by $\{1, \ldots, n\}$.

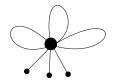


- Red vertices by a positive integer (genus).
- Legs bijectively by $\{1, \ldots, n\}$.
- Gray vertices by $Com(n) = H_0(\Gamma_{g,n}) = \mathbb{Q}$.

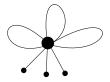


- Red vertices by a positive integer (genus).
- Legs bijectively by $\{1, \ldots, n\}$.
- Gray vertices by $Com(n) = H_0(\Gamma_{g,n}) = \mathbb{Q}$.
- Red vertices by higher homology classes.

Let $X_{g,n}$ be a wedge of g circles and n pointed intervals

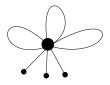


Let $X_{g,n}$ be a wedge of g circles and n pointed intervals



Define $\Gamma_{g,n} = \pi_0(\operatorname{aut}_\partial(X_{g,n}))$.

Let $X_{g,n}$ be a wedge of g circles and n pointed intervals



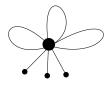
Define $\Gamma_{g,n} = \pi_0(\operatorname{aut}_\partial(X_{g,n}))$.

Conant-Kassabov-Hatcher-Vogtmann tell us:

Theorem

 $H_*(\Gamma) := \{H_*(\Gamma_{g,n})\}$ forms a modular operad isomorphic to $H_*(\mathsf{FT}(\mathit{Lie}))$

Let $X_{g,n}$ be a wedge of g circles and n pointed intervals



Define $\Gamma_{g,n} = \pi_0(\operatorname{aut}_\partial(X_{g,n}))$.

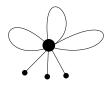
Conant-Kassabov-Hatcher-Vogtmann tell us:

Theorem

 $H_*(\Gamma) := \{H_*(\Gamma_{g,n})\}$ forms a modular operad isomorphic to $H_*(\mathsf{FT}(\mathit{Lie}))$

The S_n module $H_i(\Gamma_{1,n})$ is irreducible.

Let $X_{g,n}$ be a wedge of g circles and n pointed intervals



Define $\Gamma_{g,n} = \pi_0(\operatorname{aut}_\partial(X_{g,n}))$.

Conant-Kassabov-Hatcher-Vogtmann tell us:

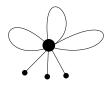
Theorem

 $H_*(\Gamma) := \{H_*(\Gamma_{g,n})\}$ forms a modular operad isomorphic to $H_*(\mathsf{FT}(\mathit{Lie}))$

The S_n module $H_i(\Gamma_{1,n})$ is irreducible.

• It's zero if *i* is odd.

Let $X_{g,n}$ be a wedge of g circles and n pointed intervals



Define $\Gamma_{g,n} = \pi_0(\operatorname{aut}_\partial(X_{g,n}))$.

Conant-Kassabov-Hatcher-Vogtmann tell us:

Theorem

 $H_*(\Gamma) := \{H_*(\Gamma_{g,n})\}$ forms a modular operad isomorphic to $H_*(\mathsf{FT}(\mathit{Lie}))$

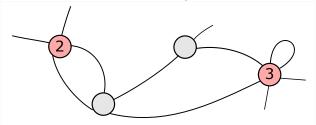
The S_n module $H_i(\Gamma_{1,n})$ is irreducible.

- It's zero if *i* is odd.
- $H_{2j}(\Gamma_{1,2j+1})$ is the alternating representation.

The acyclic graph complex – $ft(H(\Gamma))$

To each graph γ , form a graded vector space

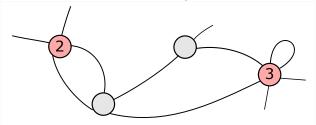
$$\mathsf{ft}(H(\Gamma))(g,n) = \bigoplus_{\substack{\gamma \text{ red vertices} \\ \text{of } \gamma}} [\bigotimes_{\substack{\mathsf{red} \text{ vertices} \\ \text{of } \gamma}} \widetilde{H}_*(\Gamma_{g(\mathbf{v}),n(\mathbf{v})})]$$



The acyclic graph complex – $ft(H(\Gamma))$

To each graph γ , form a graded vector space

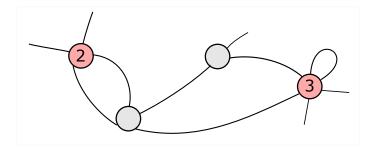
$$\mathsf{ft}(H(\Gamma))(g,n) = \bigoplus_{\substack{\gamma \text{ red vertices} \\ \text{of } \gamma}} [\bigotimes_{\substack{\mathsf{red} \text{ vertices} \\ \text{of } \gamma}} \widetilde{H}_*(\Gamma_{g(\mathbf{v}),n(\mathbf{v})})]$$



The differential ∂ on $ft(H(\Gamma))(g, n)$ has the following form.

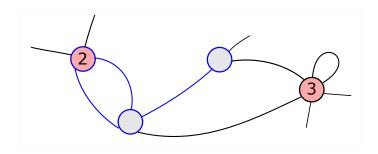
The differential ∂ on $\operatorname{ft}(H(\Gamma))(g,n)$ has the following form.

• Starting from an homogeneous element



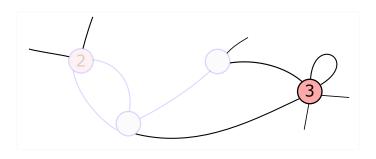
The differential ∂ on $\operatorname{ft}(H(\Gamma))(g,n)$ has the following form.

• Starting from an homogeneous element choose a connected subgraph.



The differential ∂ on $ft(H(\Gamma))(g, n)$ has the following form.

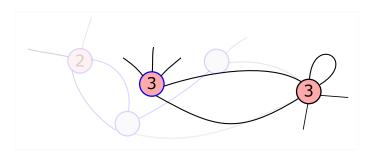
• Contract this subgraph



$$H_i(\Gamma_{2,4})\otimes H_0(\Gamma_{0,4})\otimes H_0(\Gamma_{0,3})\to ...$$

The differential ∂ on $ft(H(\Gamma))(g, n)$ has the following form.

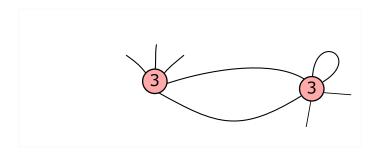
• Contract this subgraph, keeping track of the total genus.



$$H_i(\Gamma_{2,4})\otimes H_0(\Gamma_{0,4})\otimes H_0(\Gamma_{0,3})\to ...$$

The differential ∂ on $ft(H(\Gamma))(g, n)$ has the following form.

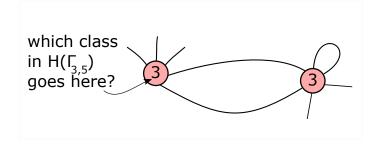
• The result will index a term in the differential.



$$H_i(\Gamma_{2,4})\otimes H_0(\Gamma_{0,4})\otimes H_0(\Gamma_{0,3})\to ...$$

The differential ∂ on $ft(H(\Gamma))(g, n)$ has the following form.

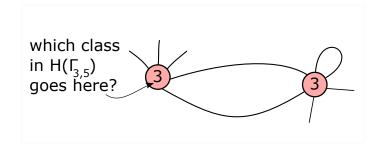
• The result will index a term in the differential...



$$H_i(\Gamma_{2,4}) \otimes H_0(\Gamma_{0,4}) \otimes H_0(\Gamma_{0,3}) \rightarrow ...$$

The differential ∂ on $ft(H(\Gamma))(g, n)$ has the following form.

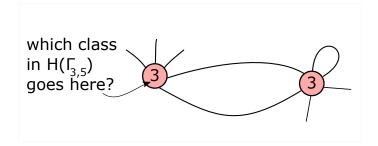
• The result will index a term in the differential...



$$H_i(\Gamma_{2,4})\otimes H_0(\Gamma_{0,4})\otimes H_0(\Gamma_{0,3})\rightarrow H_{i+2}(\Gamma_{3,5})$$

The differential ∂ on $ft(H(\Gamma))(g, n)$ has the following form.

• The result will index a term in the differential...

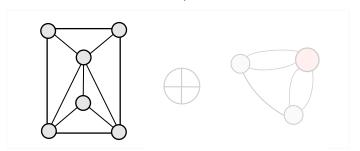


$$H_i(\Gamma_{2,4}) \otimes H_0(\Gamma_{0,4}) \otimes H_0(\Gamma_{0,3}) \stackrel{\mu_{\gamma}}{\rightarrow} H_{i+2}(\Gamma_{3,5})$$

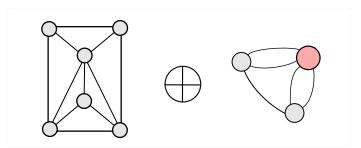
... a Massey product.

$$0 \to \mathsf{R}(g,n) \hookrightarrow \overset{\mathsf{acyclic}}{\mathsf{complex}} \to \mathsf{GC}_{g,n} \to 0$$

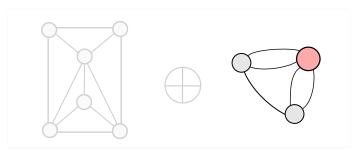
$$0 \to \mathsf{R}(g,n) \hookrightarrow \operatorname{\mathsf{acyclic}}_{\mathsf{complex}} \to \mathsf{GC}_{g,n} \to 0$$



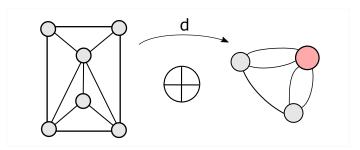
$$0 \to \mathsf{R}(g,n) \hookrightarrow \operatorname{\mathsf{acyclic}}_{\mathsf{complex}} \to \mathsf{GC}_{g,n} \to 0$$



$$0 o \mathsf{R}(g,n) \hookrightarrow \operatorname{\mathsf{acyclic}}_{\mathsf{complex}} o \mathsf{GC}_{g,n} o 0$$



$$0 o \mathsf{R}(g,n) \hookrightarrow \operatorname{\mathsf{acyclic}}_{\mathsf{complex}} o \mathsf{GC}_{g,n} o 0$$



• Willwacher used the correspondence with \mathfrak{grt}_1 to construct a family of commutative graph homology classes σ_{2j+1}

• Willwacher used the correspondence with \mathfrak{grt}_1 to construct a family of commutative graph homology classes σ_{2j+1}

• Recall (Conant-Hatcher-Kassabov-Vogtmann) $H_{2j}(\Gamma_{1,2j+1})$ is the alternating representation. Fix a generator $\alpha_{2j+1} \in H_{2j}(\Gamma_{1,2j+1})$.

• Willwacher used the correspondence with \mathfrak{grt}_1 to construct a family of commutative graph homology classes σ_{2j+1}

• Recall (Conant-Hatcher-Kassabov-Vogtmann) $H_{2j}(\Gamma_{1,2j+1})$ is the alternating representation. Fix a generator $\alpha_{2j+1} \in H_{2j}(\Gamma_{1,2j+1})$.

These classes are related by the connecting homomorphism.

The class α_{2j+1} is in the image of the Massey product associated to the stable 2j + 1-gon.

The class α_{2j+1} is in the image of the Massey product associated to the stable 2j+1-gon.

For example when j = 3:

$$H_0(\Gamma_{0,3})^{\otimes 7} \to H_6(\Gamma_{1,7})$$

The class α_{2j+1} is in the image of the Massey product associated to the stable 2j + 1-gon.

For example when j = 3:

$$H_0(\Gamma_{0,3})^{\otimes 7} \to H_6(\Gamma_{1,7})$$

22 / 26

The class α_{2j+1} is in the image of the Massey product associated to the stable 2j + 1-gon.

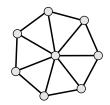
For example when j = 3:

$$H_0(\Gamma_{0,3})^{\otimes 7} \rightarrow H_6(\Gamma_{1,7})$$

The class α_{2j+1} is in the image of the Massey product associated to the stable 2j + 1-gon.

For example when j = 3:

$$H_0(\Gamma_{0,3})^{\otimes 7} \to H_6(\Gamma_{1,7})$$



The class α_{2j+1} is in the image of the Massey product associated to the stable 2j + 1-gon.

For example when j = 3:

$$H_0(\Gamma_{0,3})^{\otimes 7} \to H_6(\Gamma_{1,7})$$

The class α_{2j+1} is in the image of the Massey product associated to the stable 2j + 1-gon.

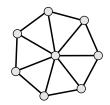
For example when j = 3:

$$H_0(\Gamma_{0,3})^{\otimes 7} \to H_6(\Gamma_{1,7})$$

The class α_{2j+1} is in the image of the Massey product associated to the stable 2j + 1-gon.

For example when j = 3:

$$H_0(\Gamma_{0,3})^{\otimes 7} \to H_6(\Gamma_{1,7})$$



The class α_{2j+1} is in the image of the Massey product associated to the stable 2j + 1-gon.

For example when j = 3:

$$H_0(\Gamma_{0,3})^{\otimes 7} \to H_6(\Gamma_{1,7})$$

Q₇

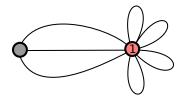
Lemma (W.)

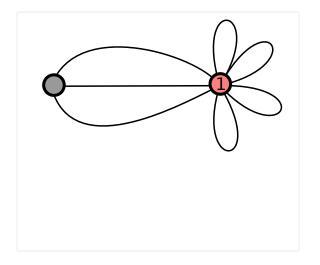
The class α_{2j+1} is in the image of the Massey product associated to the stable 2j + 1-gon.

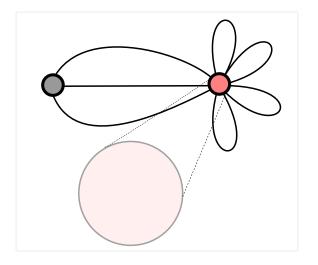
For example when j = 3:

$$H_0(\Gamma_{0,3})^{\otimes 7} \rightarrow H_6(\Gamma_{1,7})$$

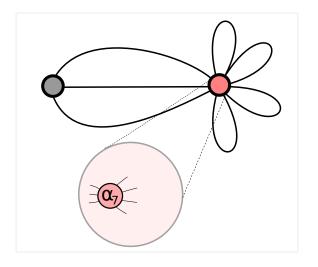
How could we use this to detect the wheel graph in R(2j + 1, 0)?



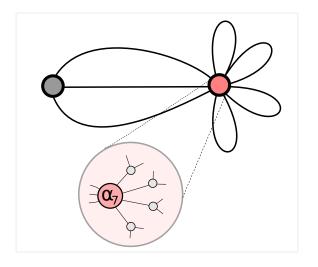




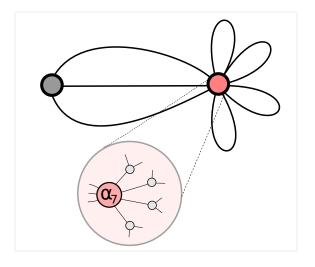
• Needs to be labeled by a class in $H_6(\Gamma_{1,11})$.



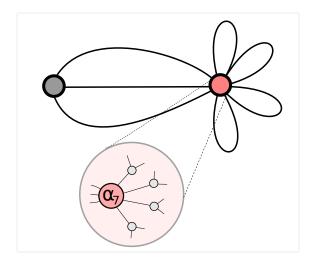
• Start $\alpha_7 \in H_6(\Gamma_{1,7})$.



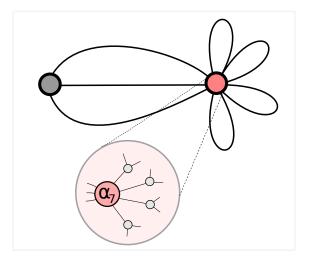
• Compose with a copy of $H_0(\Gamma_{0,3})$ for each tadpole.



• The result lands in the $H_6(\Gamma_{1,11})$,

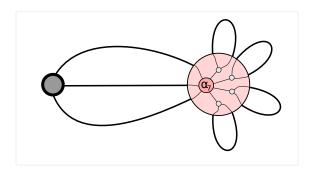


• The result lands in the $H_6(\Gamma_{1,11})$, a space of dimension 1260...

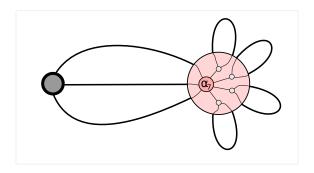


• The result lands in the $H_6(\Gamma_{1,11})$, a space of dimension 1260... but this class actually spans $H_6(\Gamma_{1,11})_{Aut(\theta)}$.

4 D > 4 A > 4 B > 4 B > B 9 Q Q



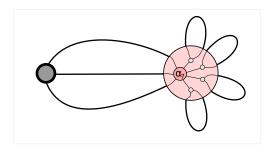
- The result lands in the $H_6(\Gamma_{1,11})$, a space of dimension 1260... but this class actually spans $H_6(\Gamma_{1,11})_{Aut(\theta)}$.
- This is a statement about the irreducible decomposition of $Res^{S_{11}}_{S_3\times(S_2\wr S_4)}(V_{5,1^6}),$



- The result lands in the $H_6(\Gamma_{1,11})$, a space of dimension 1260... but this class actually spans $H_6(\Gamma_{1,11})_{Aut(\theta)}$.
- This is a statement about the irreducible decomposition of $Res_{S_3 \times (S_2 \wr S_4)}^{S_{11}}(V_{5,1^6})$, and this works for all j.

23 / 26

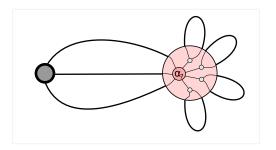
Detecting wheel graphs



Theorem (W.)

With the expansion differential $[d(\theta_{2j+1})] = \sigma_{2j+1}$.

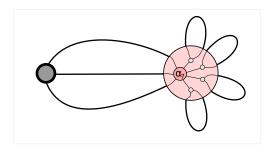
Detecting wheel graphs



Theorem (W.)

With the expansion differential $[d(\theta_{2j+1})] = \sigma_{2j+1}$. Dually, with contraction differential the wheel graph is not a boundary.

Detecting wheel graphs



Theorem (W.)

With the expansion differential $[d(\theta_{2j+1})] = \sigma_{2j+1}$. Dually, with contraction differential the wheel graph is not a boundary. I.e. the wheel graph represents a non-trivial class in GC_2^* .

ullet This result is known, but here required no knowledge of \mathfrak{grt}_1 .

Contractibility of braketohedra implies:

Contractibility of braketohedra implies:

Theorem (W.)

The "operad" encoding modular operads is Koszul.

Contractibility of braketohedra implies:

Theorem (W.)

The "operad" encoding modular operads is Koszul.

Need to encode using a quadratic presentation.

• This can't be done with a classical (colored) operad,

Contractibility of braketohedra implies:

Theorem (W.)

The "operad" encoding modular operads is Koszul.

Need to encode using a quadratic presentation.

- This can't be done with a classical (colored) operad,
- Can be done using groupoid colors.

Bigger picture

$$\left\{ \begin{array}{c} \mathsf{Lie} \ \mathsf{graph} \ \mathsf{homology} \\ \mathsf{(untwisted)} \end{array} \right\} \, \leftrightarrow \, \left\{ \begin{array}{c} \mathsf{Commutative} \ \mathsf{graph} \ \mathsf{homology} \\ \mathsf{(\Re\text{-twisted})} \end{array} \right\}$$

Bigger picture

$$\left\{ \begin{array}{c} \mathsf{Lie} \ \mathsf{graph} \ \mathsf{homology} \\ \mathsf{(untwisted)} \end{array} \right\} \, \leftrightarrow \, \left\{ \begin{array}{c} \mathsf{Commutative} \ \mathsf{graph} \ \mathsf{homology} \\ \mathsf{(\Re\text{-twisted})} \end{array} \right\}$$

Bigger picture

$$\left\{ \begin{array}{c} \mathsf{Lie} \; \mathsf{graph} \; \mathsf{homology} \\ \; \mathsf{(untwisted)} \end{array} \right\} \; \longleftrightarrow \; \left\{ \begin{array}{c} \mathsf{Commutative} \; \mathsf{graph} \; \mathsf{homology} \\ \; \mathsf{(\Re\text{-twisted})} \end{array} \right\}$$

- Other flavors of graph homology.
 - Commutative in, Lie out.
 - Associative operad.

Bigger picture

$$\left\{ \begin{array}{l} \mathsf{Lie} \; \mathsf{graph} \; \mathsf{homology} \\ \; (\mathsf{untwisted}) \end{array} \right\} \; \leftrightarrow \; \left\{ \begin{array}{l} \mathsf{Commutative} \; \mathsf{graph} \; \mathsf{homology} \\ \; (\mathfrak{K}\text{-twisted}) \end{array} \right\}$$

- Other flavors of graph homology.
 - Commutative in, Lie out.
 - Associative operad.

Bigger picture

$$\left\{ \begin{array}{c} \mathsf{Lie} \; \mathsf{graph} \; \mathsf{homology} \\ \; (\mathsf{untwisted}) \end{array} \right\} \; \leftrightarrow \; \left\{ \begin{array}{c} \mathsf{Commutative} \; \mathsf{graph} \; \mathsf{homology} \\ \; (\mathfrak{K}\text{-twisted}) \end{array} \right\}$$

- Other flavors of graph homology.
 - Commutative in, Lie out.
 - ► Associative operad.
- $H_*(\mathcal{M}_{g,n})$

Bigger picture

$$\left\{ \begin{array}{c} \mathsf{Lie} \ \mathsf{graph} \ \mathsf{homology} \\ \mathsf{(untwisted)} \end{array} \right\} \leftrightarrow \left\{ \begin{array}{c} \mathsf{Commutative} \ \mathsf{graph} \ \mathsf{homology} \\ \mathsf{(\Re\text{-twisted})} \end{array} \right\}$$

- Other flavors of graph homology.
 - ► Commutative in, Lie out.
 - Associative operad.
- $\bullet \ H_*(\mathcal{M}_{g,n}) \Rightarrow \mathrm{ft}(H(\mathcal{M}))(g,n) \sim H(\overline{\mathcal{M}}_{g,n}).$

Bigger picture

$$\left\{ \begin{array}{c} \mathsf{Lie} \ \mathsf{graph} \ \mathsf{homology} \\ \mathsf{(untwisted)} \end{array} \right\} \leftrightarrow \left\{ \begin{array}{c} \mathsf{Commutative} \ \mathsf{graph} \ \mathsf{homology} \\ \mathsf{(\Re\text{-twisted})} \end{array} \right\}$$

We can consider Massey products for any homology modular operad.

- Other flavors of graph homology.
 - ► Commutative in, Lie out.
 - Associative operad.
- $H_*(\mathcal{M}_{g,n}) \Rightarrow \mathrm{ft}(H(\mathcal{M}))(g,n) \sim H(\overline{\mathcal{M}}_{g,n}).$

Questions?

Bigger picture

$$\left\{ \begin{array}{c} \mathsf{Lie} \ \mathsf{graph} \ \mathsf{homology} \\ \mathsf{(untwisted)} \end{array} \right\} \ \longleftrightarrow \ \left\{ \begin{array}{c} \mathsf{Commutative} \ \mathsf{graph} \ \mathsf{homology} \\ \mathsf{(\mathfrak{K}\text{-}twisted)} \end{array} \right\}$$

We can consider Massey products for any homology modular operad.

- Other flavors of graph homology.
 - ► Commutative in, Lie out.
 - Associative operad.
- $H_*(\mathcal{M}_{g,n}) \Rightarrow \mathrm{ft}(H(\mathcal{M}))(g,n) \sim H(\overline{\mathcal{M}}_{g,n}).$

Questions? Answers?

Bigger picture

$$\left\{ \begin{array}{c} \mathsf{Lie} \ \mathsf{graph} \ \mathsf{homology} \\ \mathsf{(untwisted)} \end{array} \right\} \ \longleftrightarrow \ \left\{ \begin{array}{c} \mathsf{Commutative} \ \mathsf{graph} \ \mathsf{homology} \\ \mathsf{(\mathfrak{K}\text{-}twisted)} \end{array} \right\}$$

We can consider Massey products for any homology modular operad.

- Other flavors of graph homology.
 - ► Commutative in, Lie out.
 - Associative operad.
- $H_*(\mathcal{M}_{g,n}) \Rightarrow \mathrm{ft}(H(\mathcal{M}))(g,n) \sim H(\overline{\mathcal{M}}_{g,n}).$

Questions? Answers?

benward@bgsu.edu

Bigger picture

$$\left\{ \begin{array}{c} \mathsf{Lie} \; \mathsf{graph} \; \mathsf{homology} \\ \; \; \mathsf{(untwisted)} \end{array} \right\} \; \longleftrightarrow \; \left\{ \begin{array}{c} \mathsf{Commutative} \; \mathsf{graph} \; \mathsf{homology} \\ \; \; \; \mathsf{(\Re\text{-twisted})} \end{array} \right\}$$

We can consider Massey products for any homology modular operad.

- Other flavors of graph homology.
 - ► Commutative in, Lie out.
 - Associative operad.
- $H_*(\mathcal{M}_{g,n}) \Rightarrow \mathrm{ft}(H(\mathcal{M}))(g,n) \sim H(\overline{\mathcal{M}}_{g,n}).$

Questions? Answers?

benward@bgsu.edu

Thank you!

