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Last time...

An analogy:
then now

Algebraic structure Associativity Modular Operad

Combinatorics Multiply along a line Multiply along a graph

Polytopes Associahedra Bracketohedra

Homotopy Transfer via A∞-algebras via A∞- modular operads

Ben Ward Introduction to Graph Complexes - III Fall 2025 2 / 26



Last time...

An analogy:
then now

Algebraic structure Associativity Modular Operad

Combinatorics Multiply along a line Multiply along a graph

Polytopes Associahedra Bracketohedra

Homotopy Transfer via A∞-algebras via A∞- modular operads

Ben Ward Introduction to Graph Complexes - III Fall 2025 2 / 26



Last time...

An analogy:
then now

Algebraic structure Associativity Modular Operad

Combinatorics Multiply along a line Multiply along a graph

Polytopes Associahedra Bracketohedra

Homotopy Transfer via A∞-algebras via A∞- modular operads

Associative algebras : A∞-algebras

Ben Ward Introduction to Graph Complexes - III Fall 2025 2 / 26



Last time...

An analogy:
then now

Algebraic structure Associativity Modular Operad

Combinatorics Multiply along a line Multiply along a graph

Polytopes Associahedra Bracketohedra

Homotopy Transfer via A∞-algebras via A∞- modular operads

Associative algebras : A∞-algebras

::

modular operads : A∞-modular operads.

Ben Ward Introduction to Graph Complexes - III Fall 2025 2 / 26



Last time...

An analogy:
then now

Algebraic structure Associativity Modular Operad

Combinatorics Multiply along a line Multiply along a graph

Polytopes Associahedra Bracketohedra

Homotopy Transfer via A∞-algebras via A∞- modular operads

Associative algebras : A∞-algebras

::

modular operads : A∞-modular operads.

µ2 ←→ one edged compositions

Ben Ward Introduction to Graph Complexes - III Fall 2025 2 / 26



Last time...

An analogy:
then now

Algebraic structure Associativity Modular Operad

Combinatorics Multiply along a line Multiply along a graph

Polytopes Associahedra Bracketohedra

Homotopy Transfer via A∞-algebras via A∞- modular operads

Associative algebras : A∞-algebras

::

modular operads : A∞-modular operads.

µ2 ←→ one edged compositions

Ben Ward Introduction to Graph Complexes - III Fall 2025 2 / 26



Last time...

An analogy:
then now

Algebraic structure Associativity Modular Operad

Combinatorics Multiply along a line Multiply along a graph

Polytopes Associahedra Bracketohedra

Homotopy Transfer via A∞-algebras via A∞- modular operads

Associative algebras : A∞-algebras

::

modular operads : A∞-modular operads.

µ2 ←→ one edged compositions

µn ←→ n − 1 edged compositions

Ben Ward Introduction to Graph Complexes - III Fall 2025 2 / 26



Last time...

An analogy:
then now

Algebraic structure Associativity Modular Operad

Combinatorics Multiply along a line Multiply along a graph

Polytopes Associahedra Bracketohedra

Homotopy Transfer via A∞-algebras via A∞- modular operads

Associative algebras : A∞-algebras

::

modular operads : A∞-modular operads.

µ2 ←→ one edged compositions

µn ←→ n − 1 edged compositions

Ben Ward Introduction to Graph Complexes - III Fall 2025 2 / 26



Last time...

An analogy:
then now

Algebraic structure Associativity Modular Operad

Combinatorics Multiply along a line Multiply along a graph

Polytopes Associahedra Bracketohedra

Homotopy Transfer via A∞-algebras via A∞- modular operads

Associative algebras : A∞-algebras

::

modular operads : A∞-modular operads.

µ2 ←→ one edged compositions

µn ←→ n − 1 edged compositions called “Massey products”.

Ben Ward Introduction to Graph Complexes - III Fall 2025 2 / 26



Last time...

An analogy:
then now

Algebraic structure Associativity Modular Operad

Combinatorics Multiply along a line Multiply along a graph

Polytopes Associahedra Bracketohedra

Homotopy Transfer via A∞-algebras via A∞- modular operads

Associative algebras : A∞-algebras

::

µ2 ←→ one edged compositions

µn ←→ n − 1 edged compositions called “Massey products”.

Let’s package these higher operations using the bar construction.
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Analogy continues... the bar construction

Start with a group G, let’s construct a topological space.

a, b, c , d ∈ G

A path in my space is:

Another path in my space is:
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Analogy continues... the bar construction

Start with a group G, let’s construct a topological space.

a, b, c , d ∈ G

A path in my space is:

Another path in my space is:
b

B(G ) := (
∐

(Gn ×∆n))/ ∼
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Start with a group G, let’s construct a topological space.

a, b, c , d ∈ G

A path in my space is:

Another path in my space is:
b

B(G ) := (
∐

(Gn ×∆n))/ ∼

Analogously, for A an associative algebra:

B(A) = (⊕A⊗n, d)
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Bar Construction for Modular Operads

Input is a modular operad M.

M(1,5)

M(2,4)

M(1,4)

M(0,5)
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Bar Construction for Modular Operads

Input is a modular operad M.

M(1,5)

M(2,4)

M(1,4)

M(0,5)
=

Theorem (Getzler-Kapranov)

FT 2(M) ∼ M
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Graph complexes via the Feynman transform

Write FT(M) for the Bar Construction,

AKA “Feynman transform”.

Lemma

The modular operad GC is in the image of the Feynman transform.
Namely GC = FT(Com) for a Modular operad

Com(g , n) =

{
Q if g = 0

0 if g > 0

We write “Com” for the commutative operad.

Operads are a special type of modular operad in which all higher
genus spaces are 0.

For any operad O, we can consider the O-labeled graph complex
FT(O).
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Another example of O.

Complimentary to the operad Com is the operad Lie.

Lie bracket is a bilinear map, denoted [−,−], satisfying

▶ antisymmetry: [a, b] = −[b, a]

▶ Jacobi identity: [[a, b], c] + [[c , a], b] + [[b, c], a] = 0.

Define Lie(n) = span of Lie words on n letters.

▶ Lie(2) is dimension 1, basis [a, b].

▶ Lie(3) is dimension 2, basis [[a, b], c], [[c , a], b].

▶ Lie(n) is dimension (n − 1)!.
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Com vs. Lie Operads

Lie(n) is dimension (n − 1)!

Consider the power series:

fLie(x) =
∞∑
n=1

dim(Lie(n))

n!
xn =

∞∑
n=1

xn

n
= −log(1− x)
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A consequence of Koszul duality

Lie =⇒ fLie(x) = −log(1− x)

Com =⇒ fCom(x) = ex − 1

fLie ◦ −fCom(x) = −log(1− (−ex + 1)) = −x

fCom ◦ −fLie(x) = e log(1−x) − 1 = −x

This is a consequence of Koszul duality.

Upshot: if I didn’t know the dimension of Lie(n), Koszul duality
would tell me how to find it (invert a power series).
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Back to Graph Complexes

A few facts:

Com and Lie form operads that are related by Koszul duality.

Com and Lie can be considered modular operads, whose higher genus
terms are 0.

We recover GC via FT(Com)

The homology of FT(Lie) is also interesting, computes homology of
certain automorphism groups: H(Γg ,n) = H(FT(Lie)(g , n))

Question: How are these two variations of graph homology related?

We can give an answer using the A∞-analog of the Feynman transform.
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A Picture of the A∞ Feynman transform

Input is an A∞-modular operad O.

M(1,5)

M(2,4)

M(1,4)

M(0,5)
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A Picture of the A∞ Feynman transform

Input is an A∞-modular operad O.
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A Picture of the A∞ Feynman transform

Input is an A∞-modular operad O.

d
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Homotopy Transfer Theorem for Modular Operads.

Generalizing the classical A∞ story we have:

Theorem (W.)

Every dg modular operad is quasi-isomorphic to an A∞-modular operad
structure on its homology.

How do we use this theorem?

H∗(Γ) is the homology of FT(Lie),

so as A∞ modular operads H∗(Γ) ∼ FT(Lie).

The FT can be generalized to A∞-modular operads (call it ft),

so ft(H∗(Γ)) ∼ FT2(Lie).

But the modular operad Lie is 0 in higher genus – just an operad,

thus each complex FT(H∗(Γ))(g , n) with g ≥ 1 is acyclic.
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Now add Massey products

View H(Γ) = H(FT(Lie)), viewed with its Massey products.

Corollary (W.)

Let g > 0 and consider the chain complex ft(H(Γ))(g , n)

HTT ⇒ acyclic, and

Koszul duality ⇒ contains ft(Com)(g , n) as a subcomplex.

d d

Thus every homology class ft(Com)(g , n) is a represented in
ft(H(Γ))(g , n), via Massey products.
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The acyclic graph complex – ft(H(Γ))

Our graphs have:

two types of vertices:
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The acyclic graph complex – ft(H(Γ))

Our graphs have:

edges,

legs,

two types of vertices: Red
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What type of graphs?

We stipulate:

Gray vertices must be stable.

No parallel edges between gray vertices.

No loops/tadpoles at gray vertices.
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What type of graphs?

We label:

Red vertices by a positive integer (genus).

Legs bijectively by {1, . . . , n}.
Gray vertices by Com(n) = H0(Γg ,n) = Q.

Red vertices by higher homology classes.
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Lie graph homology

Let Xg ,n be a wedge of g circles and n pointed intervals

Theorem

H∗(Γ) := {H∗(Γg ,n)} forms a modular operad isomorphic to H∗(FT(Lie))

The Sn module Hi (Γ1,n) is irreducible.

It’s zero if i is odd.

H2j(Γ1,2j+1) is the alternating representation.
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The acyclic graph complex – ft(H(Γ))

To each graph γ, form a graded vector space

ft(H(Γ))(g , n) =
⊕
γ

[
⊗

red vertices
of γ

H̃∗(Γg(v),n(v))]

2

3
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Differential

The differential ∂ on ft(H(Γ))(g , n) has the following form.
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Differential

The differential ∂ on ft(H(Γ))(g , n) has the following form.

Starting from an homogeneous element

2

3
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Differential

The differential ∂ on ft(H(Γ))(g , n) has the following form.

Starting from an homogeneous element choose a connected subgraph.

2

3
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Differential

The differential ∂ on ft(H(Γ))(g , n) has the following form.

Contract this subgraph

2

3

Hi (Γ2,4)⊗ H0(Γ0,4)⊗ H0(Γ0,3)→ ...
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Differential

The differential ∂ on ft(H(Γ))(g , n) has the following form.

Contract this subgraph, keeping track of the total genus.

2

33

Hi (Γ2,4)⊗ H0(Γ0,4)⊗ H0(Γ0,3)→ ...
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Differential

The differential ∂ on ft(H(Γ))(g , n) has the following form.

The result will index a term in the differential.

33

Hi (Γ2,4)⊗ H0(Γ0,4)⊗ H0(Γ0,3)→ ...
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Differential

The differential ∂ on ft(H(Γ))(g , n) has the following form.

The result will index a term in the differential...

33

which class 
in H(Γ  )
goes here?

3,5

Hi (Γ2,4)⊗ H0(Γ0,4)⊗ H0(Γ0,3)→ ...
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Differential

The differential ∂ on ft(H(Γ))(g , n) has the following form.

The result will index a term in the differential...

33

which class 
in H(Γ  )
goes here?

3,5

Hi (Γ2,4)⊗ H0(Γ0,4)⊗ H0(Γ0,3)
µγ→ Hi+2(Γ3,5)

... a Massey product.
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The short exact sequence

Let R be the span of graphs having at least one red vertex.
For each (g , n) with g ≥ 1 there is a short exact sequence
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For each (g , n) with g ≥ 1 there is a short exact sequence

0→ R(g , n) ↪→ acyclic
complex→ GCg ,n → 0
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The short exact sequence

Let R be the span of graphs having at least one red vertex.
For each (g , n) with g ≥ 1 there is a short exact sequence

0→ R(g , n) ↪→ acyclic
complex→ GCg ,n → 0

d
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An example of this d .

Willwacher used the correspondence with grt1 to construct a family of
commutative graph homology classes σ2j+1

Recall (Conant-Hatcher-Kassabov-Vogtmann) H2j(Γ1,2j+1) is the
alternating representation. Fix a generator α2j+1 ∈ H2j(Γ1,2j+1).

These classes are related by the connecting homomorphism.
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Lemma (W.)

The class α2j+1 is in the image of the Massey product associated to the
stable 2j + 1-gon.

For example when j = 3:

H0(Γ0,3)
⊗7 → H6(Γ1,7)

α7

How could we use this to detect the wheel graph in R(2j + 1, 0)?
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Lemma (W.)

The class α2j+1 is in the image of the Massey product associated to the
stable 2j + 1-gon.

For example when j = 3:

H0(Γ0,3)
⊗7 → H6(Γ1,7)

α7

How could we use this to detect the wheel graph in R(2j + 1, 0)?

1
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Define θ2j+1 ∈ R(2j + 1, 0) as follows:

1
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Define θ2j+1 ∈ R(2j + 1, 0) as follows:

Needs to be labeled by a class in H6(Γ1,11).
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Define θ2j+1 ∈ R(2j + 1, 0) as follows:

α7

Start α7 ∈ H6(Γ1,7).

Ben Ward Introduction to Graph Complexes - III Fall 2025 23 / 26



Define θ2j+1 ∈ R(2j + 1, 0) as follows:

α7

Compose with a copy of H0(Γ0,3) for each tadpole.
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Define θ2j+1 ∈ R(2j + 1, 0) as follows:

α7

The result lands in the H6(Γ1,11),

Ben Ward Introduction to Graph Complexes - III Fall 2025 23 / 26



Define θ2j+1 ∈ R(2j + 1, 0) as follows:

α7

The result lands in the H6(Γ1,11), a space of dimension 1260...
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Define θ2j+1 ∈ R(2j + 1, 0) as follows:

α7

The result lands in the H6(Γ1,11), a space of dimension 1260... but
this class actually spans H6(Γ1,11)Aut(θ).
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Define θ2j+1 ∈ R(2j + 1, 0) as follows:

α7

The result lands in the H6(Γ1,11), a space of dimension 1260... but
this class actually spans H6(Γ1,11)Aut(θ).

This is a statement about the irreducible decomposition of
ResS11S3×(S2≀S4)(V5,16),
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Define θ2j+1 ∈ R(2j + 1, 0) as follows:

α7

The result lands in the H6(Γ1,11), a space of dimension 1260... but
this class actually spans H6(Γ1,11)Aut(θ).

This is a statement about the irreducible decomposition of
ResS11S3×(S2≀S4)(V5,16), and this works for all j .
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Detecting wheel graphs

α7

Theorem (W.)

With the expansion differential [d(θ2j+1)] = σ2j+1.

Dually, with
contraction differential the wheel graph is not a boundary. I.e. the wheel
graph represents a non-trivial class in GC∗

2.

This result is known, but here required no knowledge of grt1.
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Koszulity results

Contractibility of braketohedra implies:

Theorem (W.)

The “operad” encoding modular operads is Koszul.

Need to encode using a quadratic presentation.

This can’t be done with a classical (colored) operad,

Can be done using groupoid colors.
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This is the last slide

Bigger picture{
Lie graph homology

(untwisted)

}
↔

{
Commutative graph homology

(K-twisted)

}

We can consider Massey products for any homology modular operad.

Other flavors of graph homology.
▶ Commutative in, Lie out.
▶ Associative operad.

H∗(Mg ,n) ⇒ ft(H(M))(g , n) ∼ H(Mg ,n).

Questions? Answers?

benward@bgsu.edu

Thank you!

Ben Ward Introduction to Graph Complexes - III Fall 2025 26 / 26



This is the last slide

Bigger picture{
Lie graph homology

(untwisted)

}
↔

{
Commutative graph homology

(K-twisted)

}
We can consider Massey products for any homology modular operad.

Other flavors of graph homology.
▶ Commutative in, Lie out.
▶ Associative operad.

H∗(Mg ,n) ⇒ ft(H(M))(g , n) ∼ H(Mg ,n).

Questions? Answers?

benward@bgsu.edu

Thank you!

Ben Ward Introduction to Graph Complexes - III Fall 2025 26 / 26



This is the last slide

Bigger picture{
Lie graph homology

(untwisted)

}
↔

{
Commutative graph homology

(K-twisted)

}
We can consider Massey products for any homology modular operad.

Other flavors of graph homology.
▶ Commutative in, Lie out.
▶ Associative operad.

H∗(Mg ,n) ⇒ ft(H(M))(g , n) ∼ H(Mg ,n).

Questions? Answers?

benward@bgsu.edu

Thank you!

Ben Ward Introduction to Graph Complexes - III Fall 2025 26 / 26



This is the last slide

Bigger picture{
Lie graph homology

(untwisted)

}
↔

{
Commutative graph homology

(K-twisted)

}
We can consider Massey products for any homology modular operad.

Other flavors of graph homology.
▶ Commutative in, Lie out.
▶ Associative operad.

H∗(Mg ,n) ⇒ ft(H(M))(g , n) ∼ H(Mg ,n).

Questions? Answers?

benward@bgsu.edu

Thank you!

Ben Ward Introduction to Graph Complexes - III Fall 2025 26 / 26



This is the last slide

Bigger picture{
Lie graph homology

(untwisted)

}
↔

{
Commutative graph homology

(K-twisted)

}
We can consider Massey products for any homology modular operad.

Other flavors of graph homology.
▶ Commutative in, Lie out.
▶ Associative operad.

H∗(Mg ,n)

⇒ ft(H(M))(g , n) ∼ H(Mg ,n).

Questions? Answers?

benward@bgsu.edu

Thank you!

Ben Ward Introduction to Graph Complexes - III Fall 2025 26 / 26



This is the last slide

Bigger picture{
Lie graph homology

(untwisted)

}
↔

{
Commutative graph homology

(K-twisted)

}
We can consider Massey products for any homology modular operad.

Other flavors of graph homology.
▶ Commutative in, Lie out.
▶ Associative operad.

H∗(Mg ,n) ⇒ ft(H(M))(g , n) ∼ H(Mg ,n).

Questions? Answers?

benward@bgsu.edu

Thank you!

Ben Ward Introduction to Graph Complexes - III Fall 2025 26 / 26



This is the last slide

Bigger picture{
Lie graph homology

(untwisted)

}
↔

{
Commutative graph homology

(K-twisted)

}
We can consider Massey products for any homology modular operad.

Other flavors of graph homology.
▶ Commutative in, Lie out.
▶ Associative operad.

H∗(Mg ,n) ⇒ ft(H(M))(g , n) ∼ H(Mg ,n).

Questions?

Answers?

benward@bgsu.edu

Thank you!

Ben Ward Introduction to Graph Complexes - III Fall 2025 26 / 26



This is the last slide

Bigger picture{
Lie graph homology

(untwisted)

}
↔

{
Commutative graph homology

(K-twisted)

}
We can consider Massey products for any homology modular operad.

Other flavors of graph homology.
▶ Commutative in, Lie out.
▶ Associative operad.

H∗(Mg ,n) ⇒ ft(H(M))(g , n) ∼ H(Mg ,n).

Questions? Answers?

benward@bgsu.edu

Thank you!

Ben Ward Introduction to Graph Complexes - III Fall 2025 26 / 26



This is the last slide

Bigger picture{
Lie graph homology

(untwisted)

}
↔

{
Commutative graph homology

(K-twisted)

}
We can consider Massey products for any homology modular operad.

Other flavors of graph homology.
▶ Commutative in, Lie out.
▶ Associative operad.

H∗(Mg ,n) ⇒ ft(H(M))(g , n) ∼ H(Mg ,n).

Questions? Answers?

benward@bgsu.edu

Thank you!

Ben Ward Introduction to Graph Complexes - III Fall 2025 26 / 26



This is the last slide

Bigger picture{
Lie graph homology

(untwisted)

}
↔

{
Commutative graph homology

(K-twisted)

}
We can consider Massey products for any homology modular operad.

Other flavors of graph homology.
▶ Commutative in, Lie out.
▶ Associative operad.

H∗(Mg ,n) ⇒ ft(H(M))(g , n) ∼ H(Mg ,n).

Questions? Answers?

benward@bgsu.edu

Thank you!

Ben Ward Introduction to Graph Complexes - III Fall 2025 26 / 26


