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I am Emilio Minichiello, a math PhD student at the CUNY Graduate
Center in New York City. I study the intersection of (higher) category
theory and differential geometry. Diffeology sits snugly in this
intersection.

Question: What is Diffeology? Why is it useful?
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Introduction

Why Diffeology?

Let Man denote the category whose objects are finite dimensional
smooth manifolds and whose morphisms are smooth maps.

This category sucks! It doesn’t have all limits or colimits.
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Introduction

If you don’t know much category theory, you can think of it this way.
Consider the union of the x-axis and the y-axis in R2, we will call it
Axes.

This is the result of gluing two copies of R together at the origin. It
isn’t a manifold! 4



Introduction

For last 200 years or so, an astonishing amount of theory has been
developed for good ol’ finite dimensional smooth manifolds. These
involve elaborate constructions and powerful theorems. But none of
them apply to our friend Axes!

So here’s the idea:

1. Find a category C such that the category Man embeds into it,
Man ãÑ C, and

2. We see how much of our classical theory extends to this new
category.
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Diffeological Spaces

The category Diff of diffeological spaces is one such choice for C.

We say a manifold U is a cartesian space if U – Rn for some n P N. If
X is a set, we call a set function p : U Ñ X a parametrization if U is
cartesian.

We say a collection of subsets U “ tUi Ď Uu where each Ui is
cartesian is an open cover if

Ť

i Ui “ U.
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Diffeological Spaces

A diffeological space consists of a set X, and a collection D of
parametrizations p : U Ñ X satisfying the following three axioms:

1. D contains all the points R0 Ñ X,
2. If p : U Ñ X belongs to D, and f : V Ñ U is a smooth map, then
pf : V Ñ X belongs to D, and

3. If tUi Ď UuiPI is an open cover of U, and p : U Ñ X is a
parametrization such that p|Ui : Ui Ñ X belongs to D for every
i P I, then p P D.

If pX,Dq is a diffeological space, then we call elements p P D plots.
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Diffeological Spaces

Similarly to topology, any set S can be given two canonical
diffeologies, the discrete D˝ and indiscrete D‚ diffeologies. D˝

consists of all the constant maps U Ñ R0 Ñ S, while D‚ consists of
all parametrizations U Ñ S.

If M is a finite dimensional smooth manifold, then
DM “ tp : U Ñ M : p is smooth in the classical senseu forms a
diffeology.

Thus every manifold is a diffeological space.
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Diffeological Spaces

Let pX,DXq and pY,DYq denote diffeological spaces. We say a set
function f : X Ñ Y is smooth if for every U p

ÝÑ X P DX, the composition
U p

ÝÑ X f
ÝÑ Y P DY.

Proposition ([Igl13, Article 4.3]): If M and N are finite dimensional
smooth manifolds, then a function f : M Ñ N is smooth in the
classical sense iff it is smooth as a map between diffeological spaces.

If we let Diff denote the category whose objects are diffeological
spaces and whose morphisms are smooth maps, then the above
Proposition tells us that the inclusion functor Man ãÑ Diff is fully
faithful.
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Diffeological Spaces

Now here are some ways in which diffeological spaces are very
different from manifolds.

Let pX,Dq be a diffeological space and A Ď X a subset. Then A
inherits a canonical diffeology DĎ defined as follows. A
parametrization p : U Ñ A is said to be a plot if the composition
U p

ÝÑ A ãÑ X is a plot of X. We call DĎ the subset diffeology on A.
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Diffeological Spaces

Similarly, let pX,Dq be a diffeological space and let „ be an
equivalence relation on X. Then the quotient X{„ inherits a
diffeology D„ defined as follows. A parametrization p : U Ñ X{„ is
said to be a plot if there exists an open cover tUi Ď UuiPI and plots
pi : Ui Ñ X such that the following diagram commutes

Ui X

U X{„p

π

pi

We call D„ the quotient diffeology on X{„.
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Diffeological Spaces

Now let pX,DXq and pY,DYq be diffeological spaces, and consider the
set C8pX, Yq of smooth maps f : X Ñ Y. This inherits a diffeology DÑ,
called the functional diffeology, defined as follows. A
parametrization p : U Ñ C8pX, Yq is said to be a plot if the
corresponding map p# : Uˆ X Ñ Y, defined by p#pu, xq “ ppuqpxq, is
smooth.

Thus diffeological spaces are closed under

1. subsets,
2. quotients, and
3. mapping spaces.

This is wildly untrue for Man!
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Constructions on Diffeological
Spaces



Constructions on Diffeological Spaces

So we have a category C “ Diff, and it turns out to be an extremely
nice category. It has all limits, colimits, and is cartesian closed. It
also receives an embedding from the category of manifolds.

But what classical constructions can we extend to such a vast
generalization?
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Constructions on Diffeological Spaces

Topology: Every diffeological space X can be given a canonical
topology, called the D-topology, as follows. Say a subset A Ď X is
D-open if for every plot p : U Ñ X, the inverse image p´1pAq is open
in U.

This defines a topology on X. The collection of topological spaces
that arise from the D-topology of a diffeological space are called
Delta generated topological spaces and they have very interesting
properties, like being locally path connected. See [SYH10] and [DW14].
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Constructions on Diffeological Spaces

Differential forms: If X is a diffeological space, a differential form ω

on X consists of a collection of differential forms ωp for every plot
p : U Ñ X, with ωp P ΩkpUq, such that if f : V Ñ U is a map of plots, i.e.
a smooth map such that the following diagram commutes:

V U

X
q p

f

then f˚ωp “ ωpf “ ωq.
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Constructions on Diffeological Spaces

deRham cohomology: With this definition, one can define the
deRham cohomology ring H˚

dRpXq for any diffeological space.

Here’s an interesting diffeological space with nontrivial deRham
cohomology. Let α be an irrational number, and consider the group
Z ` αZ, of integers of the form n` αm. This is a subgroup of R, but
notice that it is not a Lie subgroup, as it is dense in R.

They are both naturally diffeological spaces. So we can take its
quotient and get another diffeological space.
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Constructions on Diffeological Spaces

Taking the quotient Tα :“ R{pZ ` αZq, we get a diffeological space,
called the irrational torus. Its D-topology is coarse, i.e. is t∅, Tαu.
This means that topology will not give interesting information for Tα.

However the irrational torus is nontrivial in diffeology, and that is
reflected in its deRham cohomology:

H0dRpTαq “ R, H1dRpTαq “ R, HkdRpTαq “ 0 if k ą 1.
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Constructions on Diffeological Spaces

The following notions have also been defined in diffeology and
detailed extensively in [Igl13]:

1. Diffeological covering spaces,
2. Diffeological universal covering spaces,
3. Diffeological fiber bundles and principal bundles,
4. Diffeological homotopy groups.

Further every diffeological fiber bundle induces an exact sequence of
diffeological homotopy groups. This allows us to compute the
diffeological homotopy groups of the irrational torus:

π0pTαq “ 1, π1pTαq “ Z ` αZ – Z2, πkpTαq “ 0 if k ą 1.
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Failure of Classical Results

Let X be a diffeological space and x P X. Consider the category
Plot0pX, xq whose objects are smooth maps p : U Ñ X, where U is an
open connected subset of Rn that includes the origin, and such that
pp0q “ x, and whose morphisms from p : U Ñ X to q : V Ñ X are
smooth maps f : U Ñ V such that fp0q “ 0 and such that qf “ p.

Then there is a functor T : Plot0pX, xq Ñ Vect, given by
pp : U Ñ Xq ÞÑ T0U, where T0U is the classical tangent space of U at 0.
There is also a functor π : Plot0pX, xq ÞÑ Diff˚ to the category of
pointed diffeological spaces, given by pp : U Ñ Xq ÞÑ pU, 0q.
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Failure of Classical Results

We can take the left Kan extension

Plot0pX, xq Vect

Diff˚

π

T

LanπT

and this defines the internal tangent space of X at x:
TxX :“ pLanπTqpX, xq.

This agrees with the usual tangent space when X is a manifold. It is
very reminiscent of the classical definition of the tangent space as
an equivalence class of curves at the point x, but is defined for all
diffeological spaces. This was first developed in [Hec95] and studied
intensively in [CW15].
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Failure of Classical Results

There is also a notion of external tangent space T̂xX, defined in
[CW15]. It is the vector space of smooth derivations on germs of
smooth functions from X to R.

Classical differential geometry says that these two notions of tangent
spaces at a point, as equivalence classes of curves, and as
derivations of germs of smooth functions, are isomorphic on smooth
manifolds.

This is not true in diffeology! There are diffeological spaces where
TxX ‰ T̂xX.
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Failure of Classical Results

The irrational torus Tα is an example.

From [CW15]: At any point x P Tα, TxpTαq – R and T̂xpTαq – R0.
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Failure of Classical Results

Another sacred result of classical differential geometry is the
isomorphism between Čech cohomology ȞkpX,Rq and deRham
cohomology HkdRpXq on smooth manifolds.

In [Igl20] it is proved that this is not the case for diffeological spaces!
Indeed, the irrational torus has Ȟ1pTα,Rq “ R2 but H1dRpTαq “ R.

In fact more is true, one can pick out the actual obstruction to these
groups being isomorphic!
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Failure of Classical Results

Theorem ([Igl20]): For any diffeological space X, there is an exact
sequence

0 Ñ H1dRpXq Ñ Ȟ1pX,Rq Ñ Fl‚pXq
c1

ÝÑ H2dRpXq Ñ Ȟ2pX,Rq

where Fl‚pXq denotes the group of diffeological pR,`q-principal
bundles that admit a connection 1-form ω.

The map c1 is the curvature of the connection ω, and if the map c1 is
zero, then Ȟ1pX,Rq – H1dRpXq.

If X is a manifold, then all pR,`q-principal bundles will be trivial over
X, and thus the deRham isomorphism in degree 1 holds for
manifolds. However the irrational torus Tα has nontrivial principal
pR,`q-bundles.
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Connection with Higher Topos Theory

In [Min22], diffeological spaces are thought of as certain kinds of
higher sheaves, called simplicial presheaves, which are functors of
the form Cop Ñ sSet.

This follows from the theorem of [BH09] that states that the category
of diffeological spaces is equivalent to the category of concrete
sheaves over the site of open subsets of cartesian spaces.

Diff » ConShpOpenq.
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Connection with Higher Topos Theory

The study of higher sheaves, also known as higher topos theory,
blends classical sheaf theory, category theory, and homotopy theory
together.

Higher topos theory is a very powerful framework to work with for
differential geometry, and allows one to define and manipulate
exotic cohomology theories. It also comes fully packed with a notion
of principal 8-bundle, which determines nonabelian cohomology.

26



Connection with Higher Topos Theory

Using this technology, one of the main results of [Min22] shows that
for a diffeological group G diffeological principal G-bundles as
defined in [Igl13] are actually examples of principal infinity bundles

RHompX,BGq » NDiffPrincGpXq.

This automatically defines another nonabelian cohomology group
Ȟ18pX,Gq closely related with the nonabelian Čech cohomology
groups of [KWW21] and [Igl20].

27



Connection with Higher Topos Theory

I believe this bridge between diffeology and higher topos theory will
be fruitful and allow us to port over more interesting and
complicated objects into diffeology, like bundle gerbes, in a
structured way.
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Connection with Higher Topos Theory

Thank you!

Questions, comments? Feel free to email me at
eminichiello67@gmail.com

These slides are available at www.emiliominichiello.com.
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