||SER, Kolkata get seminar.
From geometry to dyramics and bade
Marked lenphr spectrum rigidity.
$(S, g) \quad g$-Riemandian metric, negatively

$$
\begin{aligned}
& \left(S, g_{1}\right) \\
& \left(S, g_{2}\right)
\end{aligned}
$$

If γ is a loop let γ_{i} be the g_{i}-geodesic. $\ell_{g_{i}}\left(\gamma_{i}\right)$ - length of γ_{i} w.2.t. to g_{i}.

Q: $g_{1}, g_{2} \quad \forall \gamma$ assume $l_{g_{1}}\left(\gamma_{1}\right)=\rho_{g_{2}}\left(\gamma_{2}\right)$. When is this possithle?
Yes.
Diff (S) acting $\operatorname{Met}^{\circ}(S)$
f a diffes g a retvic

$$
\frac{f^{*} g\left(x_{p}, w_{p}\right)=g\left(D_{f} v_{p}, D_{f} w_{p}\right)}{80}
$$

MLS rigidity: (Burns-Katok) $\left(M, g_{1}\right),\left(M, g_{2}\right)$ neg. curv. compact manifild $\forall \gamma \quad e\left(\gamma_{1}\right)=e\left(\gamma_{2}\right) \quad(*)$
Then $\exists f \in D_{\text {iffo }}(M)$ s.t. $f^{A} g_{2}=g 1$
$f:\left(\$ \$, g_{1}\right) \rightarrow\left(\$, g_{2}\right)$ is is ovectery.
Croke-Otal ${ }^{9 n}$: true if $\operatorname{dim} M=2$.
STEP1: $\left(S, g_{1}\right)_{1}\left(S, g_{2}\right)$
geoderic ${ }^{\S}$ glows

$$
X_{1}^{t}: T^{\prime} S \rightarrow T^{\prime} S, X_{2}^{t}: T^{\prime} S \rightarrow T^{\prime} S
$$

na.carr.

Easy: Assumption (*) implies that ${ }^{\|} \downarrow$ geodesic flows ne conjugate (Lisshitz) Awsoving

H: T'S \rightarrow T'S home o

$$
H 0 X_{1}^{t}=X_{2}^{t} \partial H \quad H \in C^{0} .
$$

STEP 2: $H^{*} v \partial_{2}=$ vol, (Ital)

$$
\begin{gathered}
H{ }^{\text {is }} C^{\infty} \\
H: T^{\prime} S \rightarrow T^{\prime} S
\end{gathered}
$$

STEP 3: H sends triple intersections to triple intersections.

H induces isometry $S, g_{1} \rightarrow S, g_{2}$.
Anosor flow
Dee: $X^{t}: M \rightarrow M$ is Anozan \exists $D X^{t}$-invariant splitting $\quad v=\partial X^{t}$
$\forall p \quad T_{p} M=E_{p}^{S} \oplus X_{p} \oplus E_{p}^{4}$ such that.

$$
\begin{array}{ll}
\left\|D x^{t} x\right\| \leq c \lambda^{t}\|v\|, t>0 & v \in E^{s} \\
\left\|D x^{-t} v\right\| \leqslant c \lambda^{t}\|v\|, t>0 & v \in E^{u}
\end{array}
$$

Anorov: If $X_{1}{ }^{t}, X_{2}^{t} \quad d_{C 1}\left(X_{1}, X_{2}\right)$ is is all then the flows are orbit equivalent.
$\exists \quad h: M \rightarrow M$ sends or tits of X_{1}^{t} to orlitio of: X_{1}

$$
\left.h\left(\left\{X_{1}^{t}(p): t \in \mathbb{R}\right\}\right)=\left\{X_{2}^{t}\left(h C_{p}\right)\right): t+\mathbb{R}\right\}
$$

Conjugal: $H_{0} X_{1}^{t}=X_{2}^{t} \circ H$
is orbit eq. but not to ono way.
Question: X_{1}^{t}, X_{c}^{t} orbit eq. Are They conjugate C^{0}, C^{1}, C^{∞} ?

Obstruction : If H is a cay i

$$
p=X_{1}^{T}(p) \Rightarrow H(p)=X_{2}^{\top}(H \mid(p))
$$

periods ot all puiodic points p.
Obstruction 2: If H is a cony. at H is C^{\prime}

$$
\begin{aligned}
& H \circ X_{1}^{\top}(p)=X_{2}^{\top}(H(p)) \\
& D X_{1}^{\top}(p)=(D H)^{-1} D X_{2}^{\top}(D H)
\end{aligned}
$$

Heme $D X_{1}^{\top}: T_{p} M D$ is conjugate $D X_{2}^{\top} \quad$ hence has the same eigenualer
$\operatorname{dim} 3 \quad D X_{1}^{\top}=\left(\begin{array}{lll}1 & & \\ & \lambda_{\rho} & \\ & & \mu_{p}\end{array}\right)$
$\lambda_{p}=\lambda_{H(p)}$ and $\mu_{p}=\mu_{H(p)}$
Countable family of invaricuts of C^{\prime} cony'yary.
Theoven (89, de la Lave, Marco, Moriyón) dink $=3 I_{f} X_{1}^{+}$and X_{2}^{-1} have matchly periods and wattling eigenvent then they are C^{∞} conjugate.

Theorem (A G-Federico Rodriguez Hertz) $\operatorname{dim}=3 \quad X_{1}^{t}, X_{2}^{t}$ (volume preserving) and periods ave matching $\left(\Leftrightarrow C^{0}\right.$ conjugacy $)$ Then either

- X_{1}^{t} and X_{2}^{t} are C^{∞} conjugacy.
or - X_{1}^{t} and X_{2}^{t} are constant roof suspension Anosou flows.
(Feldmau-Ornstein Pos \uparrow true X_{1}^{+}, X_{2}^{t} it contact)

Geometric application

Lafout-Khalil: replace ($*$) thy
(*xp) $\int_{\gamma_{1}} \varphi_{1}({\underset{1}{1}}(t)) d t=\int_{\gamma_{2}} \varphi_{2}\left(\gamma_{2}(t)\right) d t$
Thu: If (A+) $\varphi_{1}, \varphi_{2} \in C^{3}$ then
$\exists f^{\prime}\left(s, q_{1}\right) \rightarrow\left(s, g_{2}\right)$ isometry. and

$$
\varphi_{1}=\varphi_{2} \circ f
$$

$H W$: Find two counterexamples.

