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Goals

Goal: Study H i (Γ) for Γ ≤ SLn(Z) finite index and i large.

Motivation: H i (Γ) is important in number theory, K -theory, manifold
theory, . . .
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Outline

Review: Definition of Hi (G ; M) and H i (G ; M).

Classical facts about cohomology of finite index subgroups of SLn(Z).

Borel–Serre duality.

Tits buildings.

Steinberg modules.
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K (G , 1)’s (part 1)

Definition

Let G be a group. X is K (G , 1) if π1(X ) = G and the universal cover is
contractible (all other homotopy groups vanish).

Example

RP∞ is a K (Z/2, 1).

∨nS1 is a K (Fn, 1).

(S1)n is a K (Zn, 1).
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K (G , 1)’s (part 2)

Definition

Let G be a group. X is K (G , 1) if π1(X ) = G and the universal cover is
contractible (all other homotopy groups vanish).

Theorem

If X and Y are both K (G , 1)’s, then X ' Y .
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Group homology

Theorem

If X and Y are both K (G , 1)’s, then X ' Y .

Definition

Let G be a group. Let Hi (G ) := Hi (K (G , 1)) and H i (G ) := H i (K (G , 1)).
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Twisted coefficients

Proposition

A Z[G ]-module is the same data as a bundle of abelian groups over
K (G , 1).

Definition

Let G be a group and M a Z[G ]-module. Let
Hi (G ; M) := Hi (K (G , 1); M) and H i (G ) := H i (K (G , 1); M).
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Basic facts

Proposition

H1(G ) = G ab.

Proposition

H∗(G ) are characteristic classes for covers with automorphism group G.
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Algebraic definition

Theorem

Let G be a group and M a Z[G ]-module. Then Hi (G ; M) ∼= Tor
Z[G ]
i (Z,M)

and H i (G ; M) ∼= ExtiZ[G ](Z,M).
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Stable homology

Conventions: All homology will be with Q coefficients, Γ ≤ SLn(Z) finite
index.

Theorem (Borel, Sun–Li)

For ∗ ≤ n − 2, H∗(Γ) ∼=
∧

(x5, x9, x13, . . .).

Surprising corollary:

Theorem (Farrell–Hsiang)

For d ≥ 5 and odd and i ≤ d/3, πi (Diff∂(Dd))⊗Q ∼=

{
Q, if 4 | i ,
0 otherwise.
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Unstable homology

Theorem (Borel, Sun–Li)

For ∗ ≤ n − 2, H∗(Γ) ∼=
∧

(x5, x9, x13, . . .).

Goal: Study H i (Γ) for i > n − 2.
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Vanishing in heigh degrees

Theorem (Borel-Serre)

For i >
(n
2

)
, H i (Γ) ∼= 0.
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Bieri–Eckmann duality

Definition

A group G is called a duality group of dimension d if there is a
Z[G ]-module D with Hd−i (G ) = Hi (G ;D).

Example

G is fundamental group of a compact d-manifold with contractible
universal cover and D is the orientation bundle.
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Borel–Serre duality

Theorem (Borel–Serre)

Γ is a duality group of dimension
(n
2

)
with dualizing module the Stienberg

module Stn(Q).

Since Hi (Γ; Stn(Q)) ∼= 0 for i < 0, H i (Γ) ∼= 0 for i >
(n
2

)
.

Goal: Better understand Stn(Q)).
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Tits building

Definition

Let F be a field and Tn(F ) be the simplicial complex with vertices
subspaces 0 < V < F n and V0, . . . ,Vp forming a p-simplex if
V0 < V1 < . . .Vp.
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Solomon–Tits theorem (part 1)

Theorem (Solomon–Tits)

Tn(F ) '
∨

Sn−2.

Definition (Solomon–Tits)

Stn(F ) := H̃n−2(Tn(F )).
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Spheres in Tn(F )

T3(F ) '
∨

S1. Let v1, v2, v3 be a basis of F 3.
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Apartments

Definition

Let β = {v1, . . . , vn} be a basis of F n. Let Sβ ∼= Sn−2 be the full
subcomplex of Tn(F ) of spans of subsets of β (apartment). Let [β] denote
the image of [Sβ] ∈ H̃n−2(Tn(F )) = Stn(F ) (apartment class).
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Solomon–Tits theorem (part 2)

Definition

Let β = {v1, . . . , vn} be a basis of F n. Let Sβ ∼= Sn−2 be the full
subcomplex of Tn(F ) of spans of subsets of β (apartment). Let [β] denote
the image of [Sβ] ∈ H̃n−2(Tn(F )) = Stn(F ) (apartment class).

Theorem (Solomon–Tits theorem )

Stn(F ) is generated by apartment classes.
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Goals

Goal for next time: Find an even better generating set for Stn(Q) and use
that to say something about H∗(Γ).

Goal for today: Understand the Solomon–Tits theorem for n = 3.
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Proof for n = 3 (part 1)

T3(F ) is a graph. Vertices are lines and planes in F 3. There is an
edge from a plane to all the lines it contains.

We need to first show T3(F ) '
∨

S1 which is equivalent to showing
it is connected.

We will filter T3(F ) by subspaces X0 ⊂ X1 . . . and inductively show
Xi is connected.
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Proof for n = 3 (part 2)

We will filter T3(F ) by subspaces X0 ⊂ X1 . . . and inductively show Xi is
connected.

Fix a line L0 < F 3. Let X0 = {L0}.

Jeremy Miller (Purdue University) 9/5/2023 22 / 26



Proof for n = 3 (part 3)

We will filter T3(F ) by subspaces X0 ⊂ X1 . . . and inductively show Xi is
connected.

Fix a line L0 < F 3. Let X0 = {L0} and let X1 full subcomplex on X0 and
planes containing L0.
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Proof for n = 3 (part 4)

We will filter T3(F ) by subspaces X0 ⊂ X1 . . . and inductively show Xi is
connected.

Fix a line L0 < F 3. Let X2 be full subcomplex on X1 and lines.
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Proof for n = 3 (part 5)

We will filter T3(F ) by subspaces X0 ⊂ X1 . . . and inductively show Xi is
connected.

Fix a line L0 < F 3. Let X3 = T3(F ).
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Proof for n = 3 (part 5)

We need to show H̃1(T3(F )) is generated by apartment classes. Since X2

is contractible, H̃1(T3(F )) is generated by loops passing through exactly
one vertex of X3. These are apartments.
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