Steinberg modules, Lecture 1

Jeremy Miller (Purdue)

$$
9 / 5 / 2023
$$

Goals

Goal: Study $H^{i}(\Gamma)$ for $\Gamma \leq \mathrm{SL}_{n}(\mathbb{Z})$ finite index and i large.
Motivation: $H^{i}(\Gamma)$ is important in number theory, K-theory, manifold theory, ...

Outline

- Review: Definition of $H_{i}(G ; M)$ and $H^{i}(G ; M)$.
- Classical facts about cohomology of finite index subgroups of $\mathrm{SL}_{n}(\mathbb{Z})$.
- Borel-Serre duality.
- Tits buildings.
- Steinberg modules.

$K(G, 1)$'s (part 1$)$

Definition

Let G be a group. X is $K(G, 1)$ if $\pi_{1}(X)=G$ and the universal cover is contractible (all other homotopy groups vanish).

Example

- $\mathbb{R} P^{\infty}$ is a $K(\mathbb{Z} / 2,1)$.
- $\vee_{n} S^{1}$ is a $K\left(F_{n}, 1\right)$.
- $\left(S^{1}\right)^{n}$ is a $K\left(\mathbb{Z}^{n}, 1\right)$.

$K(G, 1)$'s (part 2)

Definition

Let G be a group. X is $K(G, 1)$ if $\pi_{1}(X)=G$ and the universal cover is contractible (all other homotopy groups vanish).

Theorem

If X and Y are both $K(G, 1)$'s, then $X \simeq Y$.

Group homology

Theorem If X and Y are both $K(G, 1)$'s, then $X \simeq Y$.

Definition

Let G be a group. Let $H_{i}(G):=H_{i}(K(G, 1))$ and $H^{i}(G):=H^{i}(K(G, 1))$.

Twisted coefficients

Proposition

$A \mathbb{Z}[G]$-module is the same data as a bundle of abelian groups over $K(G, 1)$.

Definition

Let G be a group and M a $\mathbb{Z}[G]$-module. Let $H_{i}(G ; M):=H_{i}(K(G, 1) ; M)$ and $H^{i}(G):=H^{i}(K(G, 1) ; M)$.

Basic facts

Proposition
 $H_{1}(G)=G^{a b}$.

Proposition

$H^{*}(G)$ are characteristic classes for covers with automorphism group G.

Algebraic definition

Theorem

Let G be a group and M a $\mathbb{Z}[G]$-module. Then $H_{i}(G ; M) \cong \operatorname{Tor}_{i}^{\mathbb{Z}[G]}(\mathbb{Z}, M)$ and $H^{i}(G ; M) \cong \operatorname{Ext}_{\mathbb{Z}[G]}^{i}(\mathbb{Z}, M)$.

Stable homology

Conventions: All homology will be with \mathbb{Q} coefficients, $\Gamma \leq \mathrm{SL}_{n}(\mathbb{Z})$ finite index.

```
Theorem (Borel, Sun-Li)
```


Stable homology

Conventions: All homology will be with \mathbb{Q} coefficients, $\Gamma \leq \mathrm{SL}_{n}(\mathbb{Z})$ finite index.

Theorem (Borel, Sun-Li)

For $* \leq n-2, H^{*}(\Gamma) \cong \bigwedge\left(x_{5}, x_{9}, x_{13}, \ldots\right)$.
Surprising corollary:

Theorem (Farrell-Hsiang)

For $d \geq 5$ and odd and $i \leq d / 3, \pi_{i}\left(\operatorname{Diff}_{\partial}\left(D^{d}\right)\right) \otimes \mathbb{Q} \cong \begin{cases}\mathbb{Q}, & \text { if } 4 \mid i, \\ 0 & \text { otherwise. }\end{cases}$

Unstable homology

Theorem (Borel, Sun-Li)
 For $* \leq n-2, H^{*}(\Gamma) \cong \bigwedge\left(x_{5}, x_{9}, x_{13}, \ldots\right)$.

Goal: Study $H^{i}(\Gamma)$ for $i>n-2$.

Vanishing in heigh degrees

Theorem (Borel-Serre)

For $i>\binom{n}{2}, H^{i}(\Gamma) \cong 0$.

Bieri-Eckmann duality

Definition

A group G is called a duality group of dimension d if there is a $\mathbb{Z}[G]$-module \mathbb{D} with $H^{d-i}(G)=H_{i}(G ; \mathbb{D})$.

Bieri-Eckmann duality

Definition

A group G is called a duality group of dimension d if there is a $\mathbb{Z}[G]$-module \mathbb{D} with $H^{d-i}(G)=H_{i}(G ; \mathbb{D})$.

Example

G is fundamental group of a compact d-manifold with contractible universal cover and \mathbb{D} is the orientation bundle.

Borel-Serre duality

Theorem (Borel-Serre)

Γ is a duality group of dimension $\binom{n}{2}$ with dualizing module the Stienberg module $\mathrm{St}_{n}(\mathbb{Q})$.

Since $H_{i}\left(\Gamma ; \operatorname{St}_{n}(\mathbb{Q})\right) \cong 0$ for $i<0, H^{i}(\Gamma) \cong 0$ for $i>\binom{n}{2}$.
Goal: Better understand $\mathrm{St}_{n}(\mathbb{Q})$).

Tits building

Definition

Let F be a field and $T_{n}(F)$ be the simplicial complex with vertices subspaces $0<V<F^{n}$ and V_{0}, \ldots, V_{p} forming a p-simplex if $V_{0}<V_{1}<\ldots V_{p}$.

Solomon-Tits theorem (part 1)

Theorem (Solomon-Tits)
 $T_{n}(F) \simeq \bigvee S^{n-2}$.

Solomon-Tits theorem (part 1)

Theorem (Solomon-Tits)
$T_{n}(F) \simeq \bigvee S^{n-2}$.

Definition (Solomon-Tits)

$S t_{n}(F):=\widetilde{H}_{n-2}\left(T_{n}(F)\right)$.

Spheres in $T_{n}(F)$

$T_{3}(F) \simeq \bigvee S^{1}$. Let v_{1}, v_{2}, v_{3} be a basis of F^{3}.

Apartments

Definition

Let $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of F^{n}. Let $S_{\beta} \cong S^{n-2}$ be the full subcomplex of $T_{n}(F)$ of spans of subsets of β (apartment). Let $[\beta$] denote the image of $\left[S_{\beta}\right] \in \widetilde{H}_{n-2}\left(T_{n}(F)\right)=\operatorname{St}_{n}(F)$ (apartment class).

Solomon-Tits theorem (part 2)

Definition

Let $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of F^{n}. Let $S_{\beta} \cong S^{n-2}$ be the full subcomplex of $T_{n}(F)$ of spans of subsets of β (apartment). Let $[\beta]$ denote the image of $\left[S_{\beta}\right] \in \widetilde{H}_{n-2}\left(T_{n}(F)\right)=\operatorname{St}_{n}(F)$ (apartment class).

Theorem (Solomon-Tits theorem)

$\mathrm{St}_{n}(F)$ is generated by apartment classes.

Goals

Goal for next time: Find an even better generating set for $\operatorname{St}_{n}(\mathbb{Q})$ and use that to say something about $H^{*}(\Gamma)$.

Goal for today: Understand the Solomon-Tits theorem for $n=3$.

Proof for $n=3$ (part 1)

- $T_{3}(F)$ is a graph. Vertices are lines and planes in F^{3}. There is an edge from a plane to all the lines it contains.
- We need to first show $T_{3}(F) \simeq \bigvee S^{1}$ which is equivalent to showing it is connected.
- We will filter $T_{3}(F)$ by subspaces $X_{0} \subset X_{1} \ldots$ and inductively show X_{i} is connected.

Proof for $n=3$ (part 2)

We will filter $T_{3}(F)$ by subspaces $X_{0} \subset X_{1} \ldots$ and inductively show X_{i} is connected.

Fix a line $L_{0}<F^{3}$. Let $X_{0}=\left\{L_{0}\right\}$.

L_0

Proof for $n=3$ (part 3)

We will filter $T_{3}(F)$ by subspaces $X_{0} \subset X_{1} \ldots$ and inductively show X_{i} is connected.

Fix a line $L_{0}<F^{3}$. Let $X_{0}=\left\{L_{0}\right\}$ and let X_{1} full subcomplex on X_{0} and planes containing L_{0}.

Proof for $n=3$ (part 4)

We will filter $T_{3}(F)$ by subspaces $X_{0} \subset X_{1} \ldots$ and inductively show X_{i} is connected.

Fix a line $L_{0}<F^{3}$. Let X_{2} be full subcomplex on X_{1} and lines.

Proof for $n=3$ (part 5)

We will filter $T_{3}(F)$ by subspaces $X_{0} \subset X_{1} \ldots$ and inductively show X_{i} is connected.

Fix a line $L_{0}<F^{3}$. Let $X_{3}=T_{3}(F)$.

Proof for $n=3$ (part 5)

We need to show $\tilde{H}_{1}\left(T_{3}(F)\right)$ is generated by apartment classes. Since X_{2} is contractible, $\tilde{H}_{1}\left(T_{3}(F)\right)$ is generated by loops passing through exactly one vertex of X_{3}. These are apartments.

