Steinberg modules, Lecture 1

Jeremy Miller (Purdue)

9/5/2023

9/5/2023

Jeremy Miller (Purdue University)

- Goal: Study $H^i(\Gamma)$ for $\Gamma \leq SL_n(\mathbb{Z})$ finite index and *i* large.
- Motivation: $H^i(\Gamma)$ is important in number theory, *K*-theory, manifold theory, ...

< □ > < 同 > < 回 > < Ξ > < Ξ

- Review: Definition of $H_i(G; M)$ and $H^i(G; M)$.
- Classical facts about cohomology of finite index subgroups of $SL_n(\mathbb{Z})$.
- Borel-Serre duality.
- Tits buildings.
- Steinberg modules.

Let G be a group. X is K(G, 1) if $\pi_1(X) = G$ and the universal cover is contractible (all other homotopy groups vanish).

Example

• $\mathbb{R}P^{\infty}$ is a $K(\mathbb{Z}/2,1)$.

•
$$\vee_n S^1$$
 is a $K(F_n, 1)$.

•
$$(S^1)^n$$
 is a $K(\mathbb{Z}^n,1)$.

.

Let G be a group. X is K(G, 1) if $\pi_1(X) = G$ and the universal cover is contractible (all other homotopy groups vanish).

Theorem

If X and Y are both K(G, 1)'s, then $X \simeq Y$.

Theorem

If X and Y are both K(G, 1)'s, then $X \simeq Y$.

Definition

Let G be a group. Let $H_i(G) := H_i(K(G,1))$ and $H^i(G) := H^i(K(G,1))$.

.

Proposition

A $\mathbb{Z}[G]$ -module is the same data as a bundle of abelian groups over K(G, 1).

Definition

Let G be a group and M a $\mathbb{Z}[G]$ -module. Let $H_i(G; M) := H_i(K(G, 1); M)$ and $H^i(G) := H^i(K(G, 1); M)$.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Proposition

 $H_1(G) = G^{ab}.$

Proposition

 $H^*(G)$ are characteristic classes for covers with automorphism group G.

.

Image: Image:

Theorem

Let G be a group and M a $\mathbb{Z}[G]$ -module. Then $H_i(G; M) \cong \operatorname{Tor}_i^{\mathbb{Z}[G]}(\mathbb{Z}, M)$ and $H^i(G; M) \cong \operatorname{Ext}_{\mathbb{Z}[G]}^i(\mathbb{Z}, M)$. Conventions: All homology will be with \mathbb{Q} coefficients, $\Gamma \leq SL_n(\mathbb{Z})$ finite index.

Theorem (Borel, Sun–Li)

For $* \leq n-2$, $H^*(\Gamma) \cong \bigwedge (x_5, x_9, x_{13}, \ldots)$.

.

Image: Image:

Conventions: All homology will be with $\mathbb Q$ coefficients, $\Gamma \leq \mathsf{SL}_n(\mathbb Z)$ finite index.

For
$$* \leq n - 2$$
, $H^*(\Gamma) \cong \bigwedge (x_5, x_9, x_{13}, ...)$.

Surprising corollary:

Theorem (Farrell–Hsiang)

For
$$d \geq 5$$
 and odd and $i \leq d/3$, $\pi_i(Diff_\partial(D^d)) \otimes \mathbb{Q} \cong \begin{cases} \mathbb{Q}, \\ 0 \end{cases}$

if 4 | i, otherwise.

・ロト ・四ト ・ヨト ・ヨト

Theorem (Borel, Sun-Li)

For $* \leq n-2$, $H^*(\Gamma) \cong \bigwedge (x_5, x_9, x_{13}, \ldots)$.

Goal: Study $H^i(\Gamma)$ for i > n - 2.

★ ∃ ► ★

Theorem (Borel-Serre)

For $i > \binom{n}{2}$, $H^i(\Gamma) \cong 0$.

(4) (3) (4) (4) (4)

Image: Image:

A group G is called a duality group of dimension d if there is a $\mathbb{Z}[G]$ -module \mathbb{D} with $H^{d-i}(G) = H_i(G; \mathbb{D})$.

< ∃ > < ∃

9/5/2023

13/26

Jeremy Miller (Purdue University)

A group G is called a duality group of dimension d if there is a $\mathbb{Z}[G]$ -module \mathbb{D} with $H^{d-i}(G) = H_i(G; \mathbb{D})$.

Example

G is fundamental group of a compact d-manifold with contractible universal cover and $\mathbb D$ is the orientation bundle.

Theorem (Borel–Serre)

 Γ is a duality group of dimension $\binom{n}{2}$ with dualizing module the Stienberg module $St_n(\mathbb{Q}).$

Since $H_i(\Gamma; \operatorname{St}_n(\mathbb{Q})) \cong 0$ for i < 0, $H^i(\Gamma) \cong 0$ for $i > \binom{n}{2}$.

Goal: Better understand $St_n(\mathbb{Q})$).

Tits building

Definition

Let F be a field and $T_n(F)$ be the simplicial complex with vertices subspaces $0 < V < F^n$ and V_0, \ldots, V_p forming a p-simplex if $V_0 < V_1 < \ldots V_p$.

< 注 > < 注

Theorem (Solomon–Tits)

 $T_n(F)\simeq \bigvee S^{n-2}.$

Jeremy Miller (Purdue University)

イロト イヨト イヨト イヨ

Theorem (Solomon–Tits)

 $T_n(F) \simeq \bigvee S^{n-2}.$

Definition (Solomon–Tits)

 $St_n(F) := \widetilde{H}_{n-2}(T_n(F)).$

<ロ> <四> <四> <四> <四</td>

Spheres in $T_n(F)$

 $T_3(F) \simeq \bigvee S^1$. Let v_1, v_2, v_3 be a basis of F^3 .

< □ > < 同 > < 回 > < 回 > < 回 >

Let $\beta = \{v_1, \ldots, v_n\}$ be a basis of F^n . Let $S_{\beta} \cong S^{n-2}$ be the full subcomplex of $T_n(F)$ of spans of subsets of β (apartment). Let $[\beta]$ denote the image of $[S_{\beta}] \in \widetilde{H}_{n-2}(T_n(F)) = \operatorname{St}_n(F)$ (apartment class).

Let $\beta = \{v_1, \ldots, v_n\}$ be a basis of F^n . Let $S_{\beta} \cong S^{n-2}$ be the full subcomplex of $T_n(F)$ of spans of subsets of β (apartment). Let $[\beta]$ denote the image of $[S_{\beta}] \in \widetilde{H}_{n-2}(T_n(F)) = \operatorname{St}_n(F)$ (apartment class).

- 4 間 ト 4 ヨ ト 4 ヨ ト - -

9/5/2023

19/26

Theorem (Solomon–Tits theorem)

 $St_n(F)$ is generated by apartment classes.

Goal for next time: Find an even better generating set for $St_n(\mathbb{Q})$ and use that to say something about $H^*(\Gamma)$.

Goal for today: Understand the Solomon–Tits theorem for n = 3.

▲ 恵 ▶ ▲

- $T_3(F)$ is a graph. Vertices are lines and planes in F^3 . There is an edge from a plane to all the lines it contains.
- We need to first show $T_3(F) \simeq \bigvee S^1$ which is equivalent to showing it is connected.
- We will filter $T_3(F)$ by subspaces $X_0 \subset X_1 \dots$ and inductively show X_i is connected.

Fix a line $L_0 < F^3$. Let $X_0 = \{L_0\}$.

• L_0

▲御▶ ▲陸▶ ▲臣

Fix a line $L_0 < F^3$. Let $X_0 = \{L_0\}$ and let X_1 full subcomplex on X_0 and planes containing L_0 .

Fix a line $L_0 < F^3$. Let X_2 be full subcomplex on X_1 and lines.

Fix a line $L_0 < F^3$. Let $X_3 = T_3(F)$.

We need to show $\tilde{H}_1(T_3(F))$ is generated by apartment classes. Since X_2 is contractible, $\tilde{H}_1(T_3(F))$ is generated by loops passing through exactly one vertex of X_3 . These are apartments.

