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Goals

Goal: Study H/(T) for I < SL,(Z) finite index and i large.

Motivation: H/(I') is important in number theory, K-theory, manifold
theory, ...
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Review: Definition of H;(G; M) and H'(G; M).

Classical facts about cohomology of finite index subgroups of SL,(Z).
Borel-Serre duality.

Tits buildings.

Steinberg modules.
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K(G,1)'s (part 1)

Let G be a group. X is K(G,1) if m1(X) = G and the universal cover is
contractible (all other homotopy groups vanish).

Example
e RP>isa K(Z/2,1).
o V,Stisa K(F,,1).
o (SHmisa K(Z",1).
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K(G,1)'s (part 2)

Definition

Let G be a group. X is K(G,1) if m1(X) = G and the universal cover is
contractible (all other homotopy groups vanish).

If X and Y are both K(G,1)’s, then X ~ Y. \
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Group homology

If X and Y are both K(G,1)’s, then X ~ Y. \

Definition
Let G be a group. Let H;(G) := H;(K(G,1)) and H'(G) := H'(K(G,1)).
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Twisted coefficients

A Z|G]-module is the same data as a bundle of abelian groups over
K(G,1).

Definition
Let G be a group and M a Z[G]-module. Let
H:(G; M) := H;(K(G,1); M) and H'(G) := H/(K(G,1); M).
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Proposition
Hi(G) = G?.

Proposition

H*(G) are characteristic classes for covers with automorphism group G.
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Algebraic definition

Let G be a group and M a Z[G]-module. Then H;(G; M) = Tor,-Z[G](Z, M)
and H'(G; M) & Exty;(Z, M).
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Stable homology

Conventions: All homology will be with Q coefficients, I' < SL,(Z) finite
index.

Theorem (Borel, Sun—Li)

For + < n—2, H*(I') & A(xs, x0, x13, - . .)-
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Stable homology

Conventions: All homology will be with Q coefficients, I' < SL,(Z) finite
index.

Theorem (Borel, Sun—Li)

For + < n—2, H*(I') & A(xs, x0, x13, - . .)-

Surprising corollary:

Theorem (Farrell-Hsiang)

Q, if4l|i,

For d > 5 and odd and i < d/3, m;(Diffy(D9)) @ Q = _
0 otherwise.
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Unstable homology

Theorem (Borel, Sun—Li)

For + < n—2, H*(I') & A(xs, x0, x13, - . .).

Goal: Study H/(T) for i > n—2.

Jeremy Miller (Purdue University) 9/5/2023 11/26



Vanishing in heigh degrees

Theorem (Borel-Serre)
For i > (3), H(I') = 0.

zero 5

stable
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Bieri—-Eckmann duality

Definition

A group G is called a duality group of dimension d if there is a
Z[G]-module D with H=/(G) = H;(G; D).
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Bieri—-Eckmann duality

A group G is called a duality group of dimension d if there is a
Z[G]-module D with H=/(G) = H;(G; D).

Example

G is fundamental group of a compact d-manifold with contractible
universal cover and DD is the orientation bundle.
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Borel-Serre duality

Theorem (Borel-Serre)

n

[ is a duality group of dimension (3) with dualizing module the Stienberg
module St,(Q).

Since H;(T; Stp(Q)) = 0 for i < 0, H/(F) 220 for i > (3).

Goal: Better understand St,(Q)).
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Tits building

Definition

Let F be a field and T,(F) be the simplicial complex with vertices
subspaces 0 < V < F" and V, ..., V, forming a p-simplex if
Vo< Vi < ...Vp.

A<B<C
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Solomon-Tits theorem (part 1)

Theorem (Solomon—Tits)
To(F) ~ \/ §"2.
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Solomon-Tits theorem (part 1)

Theorem (Solomon—Tits)
To(F) ~ \/ §"2.

Definition (Solomon-Tits)

Stn(F) = ﬁn—2(Tn(F))'
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Spheres in T,(F)

T3(F) ~\/ S'. Let v, v2, v3 be a basis of F3.

span(v_1)

span(v_1,v_3) span(v_1,v_2)

span(v_2
span(v_3) pan(v_2)

span(v_2,v_3)
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Apartments

Definition

Let 8= {v1,...,V,} be a basis of F". Let Sg = S"~2 be the full
subcomplex of T,(F) of spans of subsets of 3 (apartment). Let [3] denote
the image of [Sg] € Hp—2( Tn(F)) = Sta(F) (apartment class).

span(v_1)

span(v_1,v_3) span(v_1,v_2)

span(v_2
span(v_3) pan(v_2)

span(v_2,v_3)
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Solomon-Tits theorem (part 2)

Definition

Let 8= {v1,...,V,} be a basis of F". Let Sg = S"~2 be the full
subcomplex of T,(F) of spans of subsets of 3 (apartment). Let [3] denote
the image of [Sg] € Hp—2( Ta(F)) = Sta(F) (apartment class).

Theorem (Solomon—Tits theorem )

Stn(F) is generated by apartment classes.
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Goals

Goal for next time: Find an even better generating set for St,(Q) and use
that to say something about H*(I').

Goal for today: Understand the Solomon—Tits theorem for n = 3.
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Proof for n = 3 (part 1)

e T3(F) is a graph. Vertices are lines and planes in F3. There is an
edge from a plane to all the lines it contains.
o We need to first show T3(F) ~ \/ S which is equivalent to showing

it is connected.
o We will filter T3(F) by subspaces Xy C X ... and inductively show

X; is connected.
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Proof for n = 3 (part 2)

We will filter T3(F) by subspaces Xp C X; ... and inductively show X is
connected.

Fix a line Lo < F3. Let Xo = {Lo}.

L0
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Proof for n = 3 (part 3)

We will filter T3(F) by subspaces Xp C X; ... and inductively show X is
connected.

Fix a line Ly < F3. Let Xo = {Lo} and let X; full subcomplex on Xy and

planes containing Lg.
(]
P_1
/O P_2

o
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Proof for n = 3 (part 4)

We will filter T3(F) by subspaces Xp C X; ... and inductively show X is
connected.

Fix a line Ly < F3. Let X» be full subcomplex on X; and lines.

Plo o4
P2
///-o—o L2

(- Y
P 3 °L3

°
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Proof for n = 3 (part 5)

We will filter T3(F) by subspaces Xo C Xj ... and inductively show X; is
connected.

Fix a line Lo < F3. Let X3 = T3(F).

P1o
P2 - >° P4
——o—— 0o
o L2
L_(\
0 ——0
P_3 L3
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Proof for n = 3 (part 5)

We need to show H;(T3(F)) is generated by apartment classes. Since X;

is contractible, Hy(T3(F)) is generated by loops passing through exactly
one vertex of X3. These are apartments.

P1, L1
/C:_ > °Pa
o//P_ °2 L2 °
o~

0 e @

P_3 L3
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