Steinberg modules, Lecture 2

Jeremy Miller (Purdue)

9/7/2023

Jeremy Miller (Purdue University)

Goal: Study $H^i(\Gamma)$ for $\Gamma \leq SL_n(\mathbb{Z})$ finite index and *i* large.

Today we primarily will focus on the $H^{\binom{n}{2}}(SL_n(\mathbb{Z}))$.

▲ □ ▶ ▲ 三 ▶ ▲ 三

- Review of Lecture 1.
- Cohomology growth for high index subgroups.
- Church–Farb–Putman conjecture.
- Integral apartments.

Stable and unstable cohomology of $H^*(\Gamma)$

Let $\Gamma \leq SL_n(\mathbb{Z})$ finite index.

- $H^i(\Gamma)$ known if i < n-1.
- $H^{i}(\Gamma) = 0$ if $i > {n \choose 2}$.

Cohomology in degree $\binom{n}{2}$

Theorem (????)

For all N and n > 1, there exist $\Gamma \leq SL_n(\mathbb{Z})$ finite index with dim $H^{\binom{n}{2}}(\Gamma) > N$.

< ∃ > < ∃

Conjecture (Church–Farb–Putman)

 $H^{\binom{n}{2}-i}(\mathsf{SL}_n(\mathbb{Z}))=0$ for $i\leq n-2$.

< ∃ > < ∃

Conjecture (Church–Farb–Putman)

 $H^{\binom{n}{2}-i}(\operatorname{SL}_n(\mathbb{Z}))=0$ for $i\leq n-2$.

Conjecture true for small *i*:

- i = 0 due to Lee–Szczarba.
- i = 1 due to Church–Putman.
- *i* = 2 due to Bruck–M.–Patzt–Sorka-Wilson.

Theorem (Borel–Serre)

 Γ is a duality group of dimension $\binom{n}{2}$ with dualizing module the Stienberg module $St_n(\mathbb{Q}).$

.

9/7/2023

8 / 27

Conjecture (Church–Farb–Putman (rephrased))

 $H_i(SL_n(\mathbb{Z}); St_n(\mathbb{Q})) = 0$ for $i \leq n-2$.

Jeremy Miller (Purdue University)

Tits building

Definition

Let F be a field and $T_n(F)$ be the simplicial complex with vertices subspaces $0 < V < F^n$ and V_0, \ldots, V_p forming a p-simplex if $V_0 < V_1 < \ldots V_p$.

3 🕨 🖌 3

Theorem (Solomon–Tits)

 $T_n(F) \simeq \bigvee S^{n-2}.$

Definition (Solomon–Tits)

 $St_n(F) := \widetilde{H}_{n-2}(T_n(F)).$

・ロト ・四ト ・ ヨト ・ ヨ

Definition

Let $\beta = \{v_1, \ldots, v_n\}$ be a basis of F^n . Let $S_{\beta} \cong S^{n-2}$ be the full subcomplex of $T_n(F)$ of spans of subsets of β (apartment). Let $[\beta]$ denote the image of $[S_{\beta}] \in \widetilde{H}_{n-2}(T_n(F)) = \operatorname{St}_n(F)$ (apartment class).

11 / 27

Definition

Let $\beta = \{v_1, \ldots, v_n\}$ be a basis of F^n . Let $S_{\beta} \cong S^{n-2}$ be the full subcomplex of $T_n(F)$ of spans of subsets of β (apartment). Let $[\beta]$ denote the image of $[S_{\beta}] \in \widetilde{H}_{n-2}(T_n(F)) = \operatorname{St}_n(F)$ (apartment class).

< ロ > < 同 > < 回 > < 回 > < 回 > <

9/7/2023

12 / 27

Theorem (Solomon–Tits theorem)

 $St_n(F)$ is generated by integral apartment classes.

Goal for today: Find an even better generating set for $St_n(\mathbb{Q})$ and use that to prove the Church–Farb–Putman conjecture for i = 0.

< ∃ > <

Definition

An apartment $S_{\beta} \subset T_n(\mathbb{Q})$ is integral $\beta = \{v_1, \ldots, v_n\}$ with v_1, \ldots, v_n a basis of \mathbb{Z}^n (as opposed to \mathbb{Q}^n).

.

14 / 27

Example

$$\beta = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\} \text{ is not integral. } \gamma = \left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 2 \end{bmatrix} \right\} \text{ is integral.}$$

Jeremy Miller (Purdue University)

Definition

An apartment $S_{\beta} \subset T_n(\mathbb{Q})$ is integral $\beta = \{v_1, \ldots, v_n\}$ with v_1, \ldots, v_n a basis of \mathbb{Z}^n (as opposed to \mathbb{Q}^n).

9/7/2023

15 / 27

Theorem (Ash-Rudolph)

 $St_n(\mathbb{Q})$ is generated by integral apartment classes.

Theorem (Ash-Rudolph)

 $St_n(\mathbb{Q})$ is generated by integral apartment classes.

Example

$$\beta = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\} \text{ is not integral. } S_{\beta} \text{ is a sum of apartments associated to}$$

the matrices:
$$\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\} \text{ and } \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}.$$

1	1	1
0	1	2
0	0	0

< 三 ▶ ∢

Proposition

 $H_0(G; M) = M/N$ with N generated by elements of the form m - gm.

Corollary

If *M* is a \mathbb{Q} -vector space and *M* is generated by elements *m* with the property that there exists *g* with gm = -m, then $H_0(G; M) = 0$.

9/7/2023

17 / 27

- Want to show $H^{\binom{n}{2}}(SL_n(\mathbb{Z})) = 0.$
- $H^{\binom{n}{2}}(\mathrm{SL}_n(\mathbb{Z})) \cong H_0(\mathrm{SL}_n(\mathbb{Z}); \mathrm{St}_n(\mathbb{Q})).$
- $St_n(\mathbb{Q})$ is generated by apartment classes S_β .
- For $\beta = \{v_1, \ldots, v_n\}$, need to find $g \in \mathsf{SL}_n(\mathbb{Z})$ with $g(S_\beta) = -S_\beta$.
- Take $g(v_1) = v_2$, $g(v_2) = -v_1$, $g(v_i) = v_i$ for $i \ge 2$.

Church–Farb–Putman conjecture for i = 0 (with picture)

$$g(v_1) = v_2, \ g(v_2) = -v_1, \ g(v_i) = v_i \ ext{for} \ i \geq 2. \ g(S_eta) = -S_eta.$$

Definition

An apartment $S_{\beta} \subset T_n(\mathbb{Q})$ is integral $\beta = \{v_1, \ldots, v_n\}$ with v_1, \ldots, v_n a basis of \mathbb{Z}^n (as opposed to \mathbb{Q}^n).

< 注入 < 注

9/7/2023

20 / 27

Still need to prove:

Theorem (Ash–Rudolph)

 $St_n(\mathbb{Q})$ is generated by integral apartments.

Lemma

Let G be a graph with vertex set V. Then $\tilde{H}_0(V)$ is generated differences of adjacent vertices iff G is connected.

Ash–Rudolph theorem n = 2

 $T_2(\mathbb{Q})$ is the vertices of the Farey Graph. $St_2(\mathbb{Q}) = \widetilde{H}_0(T_2(\mathbb{Q}))$. Integral apartments are the boundaries of edges in the Farey Graph. Generation is equivalent to connectivity of the Farey Graph.

Equivalent definition of the Farey Graph

Definition

Vertices of Farey graph are lines in \mathbb{Q}^2 (or equivalently rank 1 summands of \mathbb{Z}^2). Two summands L_1, L_2 form an edge if $\mathbb{Z}^2 = L_1 \oplus L_2$.

Start somewhere random:
$$\begin{bmatrix} 7\\9 \end{bmatrix}$$
.
Goal: End up at $\begin{bmatrix} 1\\0 \end{bmatrix}$.

Stategy lower the last coordinate.

24 / 27

Way to lower last last coordinates:

Given a vector \vec{v} , complete it to a basis \vec{v}, \vec{w} . If \vec{w} has a larger last coordinate, substract \vec{v} from it until the last coordinate is lower.

9/7/2023

25 / 27

Way to lower last last coordinates:

Given a vector \vec{v} , complete it to a basis \vec{v}, \vec{w} . If \vec{w} has a larger last coordinate, substract \vec{v} from it until the last coordinate is lower.

Example:
$$\vec{v} = \begin{bmatrix} 7 \\ 9 \end{bmatrix}$$
, $\vec{w} = \begin{bmatrix} 17 \\ 22 \end{bmatrix}$. Edge from $\vec{v} = \begin{bmatrix} 7 \\ 9 \end{bmatrix}$ to $\vec{w} - 2\vec{v} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$

Edge from
$$\begin{bmatrix} 7\\9 \end{bmatrix}$$
 to $\begin{bmatrix} 3\\4 \end{bmatrix}$.
Edge from $\begin{bmatrix} 3\\4 \end{bmatrix}$ to $\begin{bmatrix} 1\\1 \end{bmatrix}$.
Edge from $\begin{bmatrix} 1\\1 \end{bmatrix}$ to $\begin{bmatrix} 1\\0 \end{bmatrix}$.

・ロト ・ 日 ト ・ 目 ト ・

Path in the Farey Graph (part 4)

