Steinberg modules, Lecture 3

Jeremy Miller (Purdue)

$$
9 / 11 / 2023
$$

Outline

- Review
- Complex of partial bases
- Integral apartment map
- Map-of-poset lemma
- Presentations of Steinberg modules

Church-Farb-Putman conjecture

Conjecture

$H^{\left({ }_{2}^{2}\right)-i}\left(S L_{n}(\mathbb{Z})\right)=0$ for $i \leq n-2$.

Ash-Rudolph theorem

Definition

An apartment $S_{\beta} \subset T_{n}(\mathbb{Q})$ is integral $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ with v_{1}, \ldots, v_{n} a basis of \mathbb{Z}^{n} (as opposed to \mathbb{Q}^{n}).

Theorem (Ash-Rudolph)

$\mathrm{St}_{n}(\mathbb{Q})$ is generated by integral apartment classes.

Last time: Ash-Rudolph implies Church-Farb-Putman conjecture for $i=0$.

Goal: Topological proof of Ash-Rudolph (following Church-Farb-Putman).

Complex of partial bases

Definition

For R a ring, let $B_{n}(R)$ denote the complex with vertices unimodular vectors in R^{n} a collection of vertices forming a simplex if the vectors are a subset of a basis.

Complex of partial bases $(n=2)$

The difference between $B_{2}(\mathbb{Z})$ and the Farey graph is vertices are vectors instead of lines (twice as many vertices).

Span map

Let $B_{n}^{\prime}(R)$ denote the subcomplex of $B_{n}(R)$ of simplices that are not bases.
Given a simplicial complex X, let $s d(X)$ denote the Barycentric subdivision.

Definition

Let $s: \operatorname{sd}\left(B_{n}^{\prime}(\mathbb{Z})\right) \rightarrow T_{n}(\mathbb{Q})$ be the $\operatorname{map}\left\{v_{0}, \ldots, v_{p}\right\} \mapsto \operatorname{span}\left(v_{0}, \ldots, v_{p}\right)$.

Integral apartment map

$H_{n-1}\left(B_{n}(\mathbb{Z}), B_{n}^{\prime}(\mathbb{Z})\right) \xrightarrow{\partial} \widetilde{H}_{n-2}\left(B_{n}^{\prime}(\mathbb{Z})\right) \xrightarrow{s} \widetilde{H}_{n-2}\left(T_{n}(\mathbb{Q})\right)$.
$\left.H_{n-1}\left(B_{n}(\mathbb{Z}), B_{n}^{\prime}(\mathbb{Z})\right)=C_{n-1}\left(B_{n}(\mathbb{Z})\right)\right)$,
free abelian group on the set of bases.
$H_{n-2}\left(T_{n}(\mathbb{Q})\right)=S t_{n}(\mathbb{Q})$.

Integral apartment map (picture)

$$
\begin{aligned}
& \left.C_{n-1}\left(B_{n}(\mathbb{Z})\right)\right)= \\
& H_{n-1}\left(B_{n}(\mathbb{Z}), B_{n}^{\prime}(\mathbb{Z})\right) \xrightarrow{\partial} \tilde{H}_{n-2}\left(B_{n}^{\prime}(\mathbb{Z})\right) \stackrel{s}{\rightarrow} \tilde{H}_{n-2}\left(T_{n}(\mathbb{Q})\right)=\operatorname{St}_{n}(\mathbb{Q}) .
\end{aligned}
$$

Maazen's theorem

Theorem (Maazen)

$B_{n}(\mathbb{Z})$ is $(n-2)$-connected.

Corollary

$H_{n-1}\left(B_{n}(\mathbb{Z}), B_{n}(\mathbb{Z})^{\prime}\right) \rightarrow \widetilde{H}_{n-2}\left(B_{n}(\mathbb{Z})^{\prime}\right) \rightarrow \widetilde{H}_{n-2}\left(B_{n}(\mathbb{Z})\right) \cong 0$ is exact.

Thus, to show integral apartment map is surjective, just need to show $H_{n-2}\left(B_{n}^{\prime}(\mathbb{Z})\right) \xrightarrow{s} \widetilde{H}_{n-2}\left(T_{n}(\mathbb{Q})\right)$ is surjective.

Poset (definition)

Definition

A poset is a set \mathbb{A} and a relation $<$ such that for all $a, b, c \in P$:

- $a \leq a$,
- $a \leq b$ and $b \leq a$ implies $a=b$,
- $a \leq b$ and $b \leq c$ implies $a \leq c$.

Write $a<b$ if $a \leq b$ and $a \neq b$.

Realization of Posets

Definition

If \mathbb{A} is a poset, let $|\mathbb{A}|$ be the simplicial complex with vertices elements of P and with p simplices given by chains $a_{0}<\ldots<a_{p}$.

Tits buildings via posets

Definition

Let $\mathbb{T}_{n}(F)$ denote the poset of subspaces $0<V<F^{n}$ ordered by inclusion.

Proposition

$\left|\mathbb{T}_{n}(F)\right| \cong T_{n}(F)$.

Partial bases via posets

Definition

Let $\mathbb{B}_{n}(R)$ denote the poset of partial bases ordered by inclusion.

Proposition

$\left|B_{n}(R)\right| \cong s d\left(B_{n}(R)\right)$.

Height

Definition

Let $a \in \mathbb{A} . a$ has height $\geq k$ if there exists $a_{0}<a_{1}<a_{2}<\cdots<a_{k}=a$.

Subsets of posets

Let $f: \mathbb{A} \rightarrow \mathbb{B}$ be order preserving, $b \in \mathbb{B}$.

Definition

Let $\mathbb{B}^{>b}=\{q \in \mathbb{B} \mid q>b\}$.

Definition

Let $f^{\leq b}=\{p \in \mathbb{A} \mid f(p) \leq b\}$.

Quillen lemma

Lemma (Quillen)

Let $f: \mathbb{A} \rightarrow \mathbb{B}$ be order preserving. Assume for all $b \in \mathbb{B}, \mathbb{B}>b$ is $x-h t(b)$-connected and $|f \leq b|:|\mathbb{A}| \rightarrow|\mathbb{B}|$ is $(y+h t(b))$-connected. Then f is $(x+y+3)$-connected.

Goal: Apply this to $s: \mathbb{B}_{n}^{\prime}(\mathbb{Z}) \rightarrow \mathbb{T}_{n}(\mathbb{Q})$.

$\mathbb{T}_{n}(\mathbb{Q})^{>V}$

Let $V \in \mathbb{T}_{n}(\mathbb{Q}) . \operatorname{ht}(V)=\operatorname{dim}(V)-1$.

$$
T_{n}(\mathbb{Q})^{>V} \cong T_{n-\operatorname{dim}(V)}(\mathbb{Q}) \simeq \bigvee S^{n-\operatorname{dim}(V)-2}
$$

$T_{n}(\mathbb{Q})^{>V}$ is $(h t(V)+n-4)$-connected.

$s \leq V$

Let $V \in \mathbb{T}_{n}(\mathbb{Q}) . \operatorname{ht}(V)=\operatorname{dim}(V)-1$.

$$
h t(V)=\operatorname{dim}(V)-1
$$

$s^{\leq} \leq V \cong B_{\operatorname{dim}(V)}(\mathbb{Z})$ and hence is $(\operatorname{dim}(V)-2)=(h t(V)-1)$-connected.

Proof of Ash-Rudolph

Free abelian group on bases
$=H_{n-1}\left(B_{n}(\mathbb{Z}), B_{n}^{\prime}(\mathbb{Z})\right) \xrightarrow{\partial} \widetilde{H}_{n-2}\left(B_{n}^{\prime}(\mathbb{Z})\right) \xrightarrow{s} \widetilde{H}_{n-2}\left(T_{n}(\mathbb{Q})\right)=\operatorname{St}_{n}(\mathbb{Q})$.

- ∂ is surjective by Maazen's connectivity result.
- Quillen's poset lemma combined with Maazen's connectivity result and the Solomon-Tits Theorem imply s is $n-2$-connected and hence surjective on \widetilde{H}_{n-2}.

Church-Farb-Putman in codim 1

- Nice generators for $\mathrm{St}_{n}(\mathbb{Q})$ implies $H^{\binom{n}{2}}\left(\operatorname{SL}_{n}(\mathbb{Z})\right) \cong H_{0}\left(\operatorname{SL}_{n}(\mathbb{Z}) ; \operatorname{St}_{n}(\mathbb{Q})\right)=0$ for $n \geq 2$.
- Nice presentation for $\operatorname{St}_{n}(\mathbb{Q})$ implies

$$
H^{\binom{n}{2}-1}\left(\operatorname{SL}_{n}(\mathbb{Z})\right) \cong H_{1}\left(\operatorname{SL}_{n}(\mathbb{Z}) ; \operatorname{St}_{n}(\mathbb{Q})\right)=0 \text { for } n \geq 3
$$

Bykovskii presentation

Write $\left[\left[\vec{v}_{1}, \ldots, \vec{v}_{n}\right]\right]=$ image of fundamental class of $S_{\vec{v}_{1}, \ldots, \vec{v}_{n}}$.

Theorem (Bykovskii)

$S t_{n}(\mathbb{Q})$ is generated by symbols $\left[\left[\vec{v}_{1}, \ldots, \vec{v}_{n}\right]\right]$ with $\vec{v}_{1}, \ldots, \vec{v}_{n}$ a basis of \mathbb{Z}^{n} subject to the following relations:

- $\left[\left[\vec{v}_{1}, \ldots, \vec{v}_{n}\right]\right]=\operatorname{sgn}(\sigma)\left[\left[\vec{v}_{\sigma(1)}, \ldots, \vec{v}_{\sigma(n)}\right]\right]$
- $\left[\left[\vec{v}_{1}, \ldots, \vec{v}_{n}\right]\right]=\left[\left[\pm \vec{v}_{1}, \ldots, \pm \vec{v}_{n}\right]\right]$.
- $\left[\left[\vec{v}_{1}, \vec{v}_{2} \ldots, \vec{v}_{n}\right]\right]-\left[\left[\vec{v}_{1}+\vec{v}_{2}, \vec{v}_{2} \ldots, \vec{v}_{n}\right]\right]+\left[\left[\vec{v}_{1}+\vec{v}_{2}, \vec{v}_{1} \ldots, \vec{v}_{n}\right]\right]=0$.

Bykovskii presentation ($\mathrm{n}=2$)

$$
\left[\left[v_{1}, v_{2}\right]\right]-\left[\left[v_{1}+v_{2}, v_{2}\right]\right]+\left[\left[v_{1}+v_{2}, v_{1}\right]\right]=0 .
$$

