Steinberg modules, Lecture 3

Jeremy Miller (Purdue)

9/11/2023

< A[™]

9/11/2023

Jeremy Miller (Purdue University)

- Review
- Complex of partial bases
- Integral apartment map
- Map-of-poset lemma
- Presentations of Steinberg modules

Church–Farb–Putman conjecture

Conjecture

$$H^{\binom{n}{2}-i}(\operatorname{SL}_n(\mathbb{Z}))=0$$
 for $i \leq n-2$.

э

Image: A matrix and a matrix

An apartment $S_{\beta} \subset T_n(\mathbb{Q})$ is integral $\beta = \{v_1, \ldots, v_n\}$ with v_1, \ldots, v_n a basis of \mathbb{Z}^n (as opposed to \mathbb{Q}^n).

Theorem (Ash–Rudolph)

 $St_n(\mathbb{Q})$ is generated by integral apartment classes.

Last time: Ash–Rudolph implies Church–Farb–Putman conjecture for i = 0.

Goal: Topological proof of Ash-Rudolph (following Church-Farb-Putman).

For R a ring, let $B_n(R)$ denote the complex with vertices unimodular vectors in R^n a collection of vertices forming a simplex if the vectors are a subset of a basis.

Complex of partial bases (n=2)

The difference between $B_2(\mathbb{Z})$ and the Farey graph is vertices are vectors instead of lines (twice as many vertices).

Let $B'_n(R)$ denote the subcomplex of $B_n(R)$ of simplices that are not bases.

Given a simplicial complex X, let sd(X) denote the Barycentric subdivision.

Definition

Let $s : sd(B'_n(\mathbb{Z})) \to T_n(\mathbb{Q})$ be the map $\{v_0, \ldots, v_p\} \mapsto span(v_0, \ldots, v_p)$.

(本部) (* 문) (* 문) (* 문)

$$H_{n-1}(B_n(\mathbb{Z}), B'_n(\mathbb{Z})) \xrightarrow{\partial} \widetilde{H}_{n-2}(B'_n(\mathbb{Z})) \xrightarrow{s} \widetilde{H}_{n-2}(T_n(\mathbb{Q})).$$

 $H_{n-1}(B_n(\mathbb{Z}), B'_n(\mathbb{Z})) = C_{n-1}(B_n(\mathbb{Z}))),$ free abelian group on the set of bases.

 $H_{n-2}(T_n(\mathbb{Q})) = \operatorname{St}_n(\mathbb{Q}).$

Integral apartment map (picture)

 $C_{n-1}(B_n(\mathbb{Z}))) = \\H_{n-1}(B_n(\mathbb{Z}), B'_n(\mathbb{Z})) \xrightarrow{\partial} \widetilde{H}_{n-2}(B'_n(\mathbb{Z})) \xrightarrow{s} \widetilde{H}_{n-2}(T_n(\mathbb{Q})) = \operatorname{St}_n(\mathbb{Q}).$

9/23

Theorem (Maazen)

 $B_n(\mathbb{Z})$ is (n-2)-connected.

Corollary

$$H_{n-1}(B_n(\mathbb{Z}), B_n(\mathbb{Z})') o \widetilde{H}_{n-2}(B_n(\mathbb{Z})') o \widetilde{H}_{n-2}(B_n(\mathbb{Z})) \cong 0$$
 is exact.

Thus, to show integral apartment map is surjective, just need to show $H_{n-2}(B'_n(\mathbb{Z})) \xrightarrow{s} \widetilde{H}_{n-2}(T_n(\mathbb{O}))$ is surjective.

A poset is a set \mathbb{A} and a relation < such that for all $a, b, c \in P$:

- $a \leq b$ and $b \leq a$ implies a = b,
- $a \le b$ and $b \le c$ implies $a \le c$.

Write a < b if $a \leq b$ and $a \neq b$.

If \mathbb{A} is a poset, let $|\mathbb{A}|$ be the simplicial complex with vertices elements of P and with p simplices given by chains $a_0 < \ldots < a_p$.

Let $\mathbb{T}_n(F)$ denote the poset of subspaces $0 < V < F^n$ ordered by inclusion.

Proposition

 $|\mathbb{T}_n(F)| \cong T_n(F).$

イロト イヨト イヨト -

Let $\mathbb{B}_n(R)$ denote the poset of partial bases ordered by inclusion.

Proposition

 $|B_n(R)| \cong sd(B_n(R)).$

Let $a \in \mathbb{A}$. a has height $\geq k$ if there exists $a_0 < a_1 < a_2 < \cdots < a_k = a$.

æ

Let $f : \mathbb{A} \to \mathbb{B}$ be order preserving, $b \in \mathbb{B}$.

Definition

Let $\mathbb{B}^{>b} = \{q \in \mathbb{B} \mid q > b\}.$

Definition

Let $f^{\leq b} = \{p \in \mathbb{A} \mid f(p) \leq b\}.$

イロト 不得 トイヨト イヨト

Lemma (Quillen)

Let $f : \mathbb{A} \to \mathbb{B}$ be order preserving. Assume for all $b \in \mathbb{B}$, $\mathbb{B}^{>b}$ is x - ht(b)-connected and $|f^{\leq b}| : |\mathbb{A}| \to |\mathbb{B}|$ is (y + ht(b))-connected. Then f is (x + y + 3)-connected.

9/11/2023

17/23

Goal: Apply this to $s : \mathbb{B}'_n(\mathbb{Z}) \to \mathbb{T}_n(\mathbb{Q})$.

Let
$$V \in \mathbb{T}_n(\mathbb{Q})$$
. $ht(V) = dim(V) - 1$.
 $T_n(\mathbb{Q})^{>V} \cong T_{n-dim(V)}(\mathbb{Q}) \simeq \bigvee S^{n-dim(V)-2}$.
 $T_n(\mathbb{Q})^{>V}$ is $(ht(V) + n - 4)$ -connected.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 二百

$$s^{\leq V}$$

Let
$$V \in \mathbb{T}_n(\mathbb{Q})$$
. $ht(V) = dim(V) - 1$.
 $ht(V) = dim(V) - 1$.
 $s^{\leq V} \cong B_{dim(V)}(\mathbb{Z})$ and hence is $(dim(V) - 2) = (ht(V) - 1)$ -connected.

▲ロト▲園ト▲園ト▲園ト 園 めんぐ

Free abelian group on bases

- $=H_{n-1}(B_n(\mathbb{Z}),B_n'(\mathbb{Z}))\xrightarrow{\partial}\widetilde{H}_{n-2}(B_n'(\mathbb{Z}))\xrightarrow{s}\widetilde{H}_{n-2}(T_n(\mathbb{Q}))=\mathrm{St}_n(\mathbb{Q}).$
 - ∂ is surjective by Maazen's connectivity result.
 - Quillen's poset lemma combined with Maazen's connectivity result and the Solomon-Tits Theorem imply s is n-2-connected and hence surjective on \tilde{H}_{n-2} .

- Nice generators for $\operatorname{St}_n(\mathbb{Q})$ implies $H^{\binom{n}{2}}(\operatorname{SL}_n(\mathbb{Z})) \cong H_0(\operatorname{SL}_n(\mathbb{Z}); \operatorname{St}_n(\mathbb{Q})) = 0$ for $n \ge 2$.
- Nice presentation for $\operatorname{St}_n(\mathbb{Q})$ implies $H^{\binom{n}{2}-1}(\operatorname{SL}_n(\mathbb{Z})) \cong H_1(\operatorname{SL}_n(\mathbb{Z}); \operatorname{St}_n(\mathbb{Q})) = 0$ for $n \ge 3$.

9/11/2023

21/23

Write $[[\vec{v}_1, \ldots, \vec{v}_n]]$ = image of fundamental class of $S_{\vec{v}_1, \ldots, \vec{v}_n}$.

Theorem (Bykovskii)

 $St_n(\mathbb{Q})$ is generated by symbols $[[\vec{v}_1, \ldots, \vec{v}_n]]$ with $\vec{v}_1, \ldots, \vec{v}_n$ a basis of \mathbb{Z}^n subject to the following relations:

- $[[\vec{v}_1,\ldots,\vec{v}_n]] = sgn(\sigma)[[\vec{v}_{\sigma(1)},\ldots,\vec{v}_{\sigma(n)}]]$
- $[[\vec{v}_1, \ldots, \vec{v}_n]] = [[\pm \vec{v}_1, \ldots, \pm \vec{v}_n]].$
- $[[\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n]] [[\vec{v}_1 + \vec{v}_2, \vec{v}_2, \dots, \vec{v}_n]] + [[\vec{v}_1 + \vec{v}_2, \vec{v}_1, \dots, \vec{v}_n]] = 0.$

Bykovskii presentation (n=2)

 $[[v_1, v_2]] - [[v_1 + v_2, v_2]] + [[v_1 + v_2, v_1]] = 0.$

< 4[™] >