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Motivation

In topological data analysis (TDA), one of the main goals is to
estimate the shape of the data. Given a point cloud, one often
replaces the points with balls of radius r centered at that point. In
persistent homology, the scale r is varied in a range to get a
multi-resolution summary of the shape of the data.

Cech complexes are combinatorial representation of the union of
the balls. We have vertices for each data point, when two balls
intersect there is an edge, when three balls intersect there is a
triangle, and so on.
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Demonstration of a Cech complex

https://sauln.github.io/blog/nerve-playground/
Demonstration by Nathaniel Saul.
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Nerve complex and nerve lemma

Let U be a collection of open sets in a topological space. The
nerve complex N(U) has

@ a vertex for each set in U

@ a k-simplex when (k + 1) sets intersect.

Nerve lemma

Let U be a good collection of open sets, then N({) ~ union of
sets in U.

\\/\
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Cech complexes

Definition
Let (X, d) be a metric space. For a scale r > 0, the intrinsic Cech
complex C(X; r) is the nerve of the collection of open balls

{Bx(x: }xex:

Cech complexes for balls in Euclidean space are well understood
because the balls are convex and conditions of the nerve lemma are
satisfied.

For a Riemannian manifold M, when the scale r is greater than the
convexity radius, the nerve lemma no longer applies. What are the
homotopy types of intrinsic Cech complex C(M; r)?

We focus on the case M = S” and investigate the homotopy types
of the intrinsic Cech complex, C(S";r).
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Notation

Let S be the n-sphere with the geodesic metric and diameter 7.
Definition
The intrinsic Cech complex of S” at scale r € (0,), C(S"; r) is the

nerve of the open balls {Bsn(x; r)}, csn-

More formally,

C(S"r) = {finite ocCS"| ﬂ Bsn(x; r) # @} .

xeco

Definition

For a space X, the homotopy connectivity conn(X) is the largest integer
k such that 7;(X) =0 for j < k.
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Related work

@ By the nerve lemma, when 0 < r < 7, C(S”; r)~S".

7(k+1)

) [Adamaszek—Adams, 2017] C(Sl; r) ~ G2k+1 for kLJfl <r< et

@ [Virk, 2020] For n > 2, C(S”; r) is simply connected.

Question
For 6 € (0, %), how does conn(C(S"; m — §)) change depending on &7 J
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Main result

We control the connectivity of conn(C(S"; m — §)) in terms of coverings
of spheres.

Definition

For a metric space (X, d), the k-th covering radius is defined by

k
covx(k) = inf{rZO [ 3 x1,...,xk € X s.t. UB[X,-;r] —X}.
i=1

Main theorem

For n>1and § € (0,7), if conn(C(S"; 7 — §)) = k — 1, then
coven(2k +2) < § < 2-covsn(k + 1).
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Corollary

Definition

For 6 > 0, the d-covering number of a metric space (X, d) is defined by

k
numCoverx(d) := min {k >1|3x,...,x € X s.t. U Blx;; 0] = X}.

i=1

Corollary

For n > 1, the homotopy type of the Cech complex C(S”; m — d) changes
infinitely many times as & varies over the range (0, 7).

Proof: The main theorem can be restated as,
InumCovers:(5) — 2 < conn(C(S"; 7 — §)) < numCoversn(3) — 2.

numCoverg»(d) — oo as & — 0 but for any ¢ > 0, numCoversn(5) < 0.

Sucharita Mallick Cech connectivity

3
2



Statement
Corollary
Case of St

Main Result

How good are the bounds?

In the case n = 1, if conn(C(S; 7 — §)) = k — 1 then the upper bound
on 0 is sharp but the lower bund is off by approximately a factor of 4. J

éech(S )
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FIGURE 2. The homotopy types of C(Sl: r) as r varies [1] are indicated by black bars.

Theorem 1.1 gives intervals where C(S;r) may have connectivity & — 1, which are
indicated by colored bars. Left endpoints of orange bars (when & —1 is even) are tight.
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Upper bound

Definition
For 0 < § < 7, the Borsuk graph Bor(S";4) has

@ the vertex set S”, the n-sphere, and

@ an edge (u,v) when d(u,v) > 4.

Main idea

C(S™; ™ —6) is N(Bor(S";9)), the neighborhood complex of Bor(S"; §).

Lemma [Lovész, 1978]

For any graph G, the chromatic number satisfies
X(G) > conn(N(G)) + 3.

Thus we have an upper bound, conn(C(S"; 7 — §)) < x(Bor(S";4)) — 3.
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Proof of the upper bound

Theorem 1

If 6 > 2- covsa(k + 1) for some k > 1, then conn(C(S™; 7 — §)) < k — 2.

Proof.

When 6 > 2 - covsn(k + 1) for some k + 1 > 2, then x(Bor(S";9)) <
k + 1 [Moy, 2024]. Using Lovész' bound we conclude that

conn(C(S™;m —6)) < x(Bor(S";0)) 3< k+1-3=k—2.
—_—

|—27"—| when n=1
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Lower bound

Theorem 2
If 0 < & < covss(2k + 2), then conn(C(S"; 7 — 8)) > k.

Corollary [Barmak, 2023]

Let K be a simplicial complex. If any (2k + 2) vertices are contained in a
common simplex then K is k-connected.

Assumption: The collection of closed star of vertices {stx(v)} ek is
locally finite. Where
st(v) ={oc e K|oU{v} e K}.

Caveat: C(S";m — ¢) does not satisfy this assumption. But we can
choose an e-dense subset X of S” and work with that.
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Proof of the lower bound

Proof.

Choose £ > 0 such that § + € < covsa(2k + 2) and let X be an e-dense
subset of S”. Let x1,- - , X042 be any (2k + 2) points in X. As
d + e < covsn(2k + 2),

No (2k + 2) closed (6 + ¢)-balls cover S"
= Any (2k + 2) open (m — § — €)-balls intersect in S"
= Any (2k + 2) open (m — 0)-balls intersect in X
= [x1,- -, xoks2] € C(X;m = 9)
= conn(C(X; 7 — 0)) > k.
Forany i < k and f: S" — C(S"; 7 — ), we have im(f) C C(X; 7 — )

for some e-dense subset X as Siis compact. Since f is nullhomotopic in
C(X;m —9), f is nullhomotopic in C(S™; m — 9). O
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Conjectures and open questions

@ For n > 1, is the connectivity of the Cech complex C(S"; r) a
non-decreasing function of the scale r € (0,7)?

@ For n > 1, does homotopy type of the Cech complex C(S™; r)
change only countably many times as r varies over the range (0, 7)?
Can Morse theory be used to prove this?

@ Is the C(S"; r) homotopy equivalent to a finite CW complex?

@ What assumptions are needed on a compact Riemannian manifold
M so that C(M; r) is homotopy equivalent to a finite-dimensional
CW complex?
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