
Introduction
Main Result

Proofs
Open questions

Homotopy connectivity of Čech complexes of
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Motivation

In topological data analysis (TDA), one of the main goals is to
estimate the shape of the data. Given a point cloud, one often
replaces the points with balls of radius r centered at that point. In
persistent homology, the scale r is varied in a range to get a
multi-resolution summary of the shape of the data.

Čech complexes are combinatorial representation of the union of
the balls. We have vertices for each data point, when two balls
intersect there is an edge, when three balls intersect there is a
triangle, and so on.
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Demonstration of a Čech complex

https://sauln.github.io/blog/nerve-playground/

Demonstration by Nathaniel Saul.
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Persistent homology 

• Input: Increasing spaces. Output: barcode.
• Significant features persist.
• Cubic computation time in the number of simplices.

4 H. Adams et al.

3 Topological Machinery

In this section we describe how to use only a finite sampling from some unknown
underlying space to estimate the underlying space’s topology. The first step is
to build a nested family of simplicial complexes, and the second is to apply per-
sistent homology. This is the same topological approach used to analyze optical
and range image patches in [2, 16]. We refer the interested reader to [4, 24] for
more information on homology, to [14, 20, 21, 36] for introductions to persistent
homology, and to [3, 8, 10, 11, 18, 28, 33–35] for example applications of persistent
homology to sensor networks, machine learning, biology, medical imaging, etc.

3.1 Vietoris–Rips Complexes

Our nested complexes will be Vietoris–Rips simplicial complexes. The main idea
is to define all data points to be vertices of the complex, and to define a sim-
plex � on each finite set of vertices within a given diameter. Indeed, let (X, d)
denote a metric space, and fix a scale parameter r � 0. The Vietoris–Rips sim-
plical complex with vertex set X and scale parameter r, denoted VR(X; r), is
defined as follows. A finite subset � = {x1, . . . , xn} ✓ X is a face of VR(X; r)
whenever diam(�)  r (i.e., whenever sup1ijn{d(xi, xj)}  r). By definition,
VR(X; r) ✓ VR(X; r0) whenever r  r

0, so this family is indeed nested.
Let us consider an example. Let X be 21 points which (unknown to us) are

sampled with noise from a circle. Figure 3 contains four nested Vietoris–rips
complexes built from X, with r increasing from left to right. The black dots
denote X. In (a), r is small enough that a loop has not yet formed. In (b), r is
such that we recover instead a figure-eight. In (c), VR(X; r) recovers a circle. In
(d), r is large enough that the loop has filled to a disk.
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Fig. 3. Four nested Vietoris–Rips complexes, with �0 equal to 1 in all four complexes,
and with �1 equal to 0, 2, 1, and 0.

3.2 Persistent Homology

Betti numbers are one way of distinguishing between di↵erent topological spaces:
a necessary condition for two spaces to be homotopy equivalent is for all of their
Betti numbers to be equal. The k-th Betti number of a topological space, denoted
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Fig. 4. (Top) The 0-dimensional persistence barcode associated to the dataset in Fig-
ure 3. (Bottom) The 1-dimensional persistence barcode associated to the same dataset.

�k, is the rank of the k-th homology group. Roughly speaking, �k is the number
of “k-dimensional holes” in a space, where the number of 0-dimensional holes is
the number of connected components. For an n-dimensional sphere with n � 1,
we have �0 = 1 and �n = 1.

If we want to estimate the topology of the underlying space by the topology
of VR(X; r), the choice of r is important. However, without knowing the under-
lying space, we do not know how to make this choice. Hence, we use persistent
homology [21, 36], which allows us to compute the Betti numbers over a range of
r-values and display the result as a persistent homology barcode. See Figure 4.

Persistent homology depends on the the fact that the map from a topological
space Y to its k-th homology group Hk(Y ) is a functor. This means that for
r  r

0, the inclusion VR(X; r) ,! VR(X; r0)) of topological spaces induces a
map Hk

�
VR(X; r)

�
! Hk

�
VR(X; r0)

�
between homology groups [20].

The horizontal axis in Figure 4 contains the varying r-values. At a given scale
r, the Betti number �k is the number of intervals in the dimension k plot that
intersect the vertical line through scale r. In the dimension 0 plot, we see the
21 disjoint spaces joining into one connected component as r increases. The two
intervals in the dimension 1 plot correspond to the two loops that appear: each
interval begins when a loop forms and ends when that loop fills to a disk.

The topological profile of this example, �0 = 1 and �1 = 1, is obtained for a
long range of r-values in Figure 4. The idea of persistent homology is that long
intervals in the persistence barcodes correspond to real topological features of
the underlying space. We disregard short intervals as noise. Hence, this barcode
reflects the fact that our points X were noisily sampled from a circle.

3.3 Zigzag Persistent Homology

Zigzag persistence [15, 17] provides a generalization of the theory of persistent
homology. In zigzag persistence, the direction of maps along a sequence of topo-
logical spaces is arbitrary, as opposed to the unidirectional sequence of maps
in persistent homology. Given a large dataset Y , one may attempt to estimate
the topology of Y by instead estimating the topology of a number of smaller

H1

H0
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Nerve complex and nerve lemma

Let U be a collection of open sets in a topological space. The
nerve complex N(U) has

a vertex for each set in U
a k-simplex when (k + 1) sets intersect.

Nerve lemma

Let U be a good collection of open sets, then N(U) ≃ union of
sets in U .
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Čech complexes

Definition

Let (X , d) be a metric space. For a scale r > 0, the intrinsic Čech
complex Č(X ; r) is the nerve of the collection of open balls
{BX (x ; r)}x∈X .

Čech complexes for balls in Euclidean space are well understood
because the balls are convex and conditions of the nerve lemma are
satisfied.

For a Riemannian manifold M, when the scale r is greater than the
convexity radius, the nerve lemma no longer applies. What are the
homotopy types of intrinsic Čech complex Č(M; r)?

We focus on the case M = Sn and investigate the homotopy types
of the intrinsic Čech complex, Č(Sn; r).
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Notation

Let Sn be the n-sphere with the geodesic metric and diameter π.

Definition

The intrinsic Čech complex of Sn at scale r ∈ (0, π), Č(Sn; r) is the
nerve of the open balls {BSn(x ; r)}x∈Sn .

More formally,

Č(Sn; r) =

{
finite σ ⊂ Sn |

⋂
x∈σ

BSn(x ; r) ̸= ∅

}
.

Definition

For a space X , the homotopy connectivity conn(X ) is the largest integer
k such that πi (X ) = 0 for i ≤ k .

Sucharita Mallick Čech connectivity
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Related work

By the nerve lemma, when 0 < r ≤ π
2 , Č(S

n; r) ≃ Sn.

[Adamaszek-Adams, 2017] Č(S1; r) ≃ S2k+1 for πk
k+1 < r ≤ π(k+1)

k+2 .

[Virk, 2020] For n ≥ 2, Č(Sn; r) is simply connected.

Question

For δ ∈ (0, π
2 ), how does conn(Č(Sn;π − δ)) change depending on δ?

Sucharita Mallick Čech connectivity
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Main result

We control the connectivity of conn(Č(Sn;π − δ)) in terms of coverings
of spheres.

Definition

For a metric space (X , d), the k-th covering radius is defined by

covX (k) := inf

{
r ≥ 0 | ∃ x1, . . . , xk ∈ X s.t.

k⋃
i=1

B[xi ; r ] = X

}
.

Main theorem

For n ≥ 1 and δ ∈ (0, π), if conn(Č(Sn;π − δ)) = k − 1, then
covSn(2k + 2) ≤ δ ≤ 2 · covSn(k + 1).

Sucharita Mallick Čech connectivity
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Corollary

Definition

For δ > 0, the δ-covering number of a metric space (X , d) is defined by

numCoverX (δ) := min

{
k ≥ 1 | ∃ x1, . . . , xk ∈ X s.t.

k⋃
i=1

B[xi ; δ] = X

}
.

Corollary

For n ≥ 1, the homotopy type of the Čech complex Č(Sn;π − δ) changes
infinitely many times as δ varies over the range (0, π).

Proof: The main theorem can be restated as,

1
2numCoverSn(δ)− 2 ≤ conn(Č(Sn;π − δ)) ≤ numCoverSn( δ2 )− 2.

numCoverSn(δ) → ∞ as δ → 0 but for any δ > 0, numCoverSn( δ2 ) < ∞.
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How good are the bounds?

In the case n = 1, if conn(Č(S1;π − δ)) = k − 1 then the upper bound
on δ is sharp but the lower bund is off by approximately a factor of 4.
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Upper bound

Definition

For 0 < δ < π, the Borsuk graph Bor(Sn; δ) has

the vertex set Sn, the n-sphere, and

an edge (u, v) when d(u, v) > δ.

Main idea

Č(Sn;π − δ) is N(Bor(Sn; δ)), the neighborhood complex of Bor(Sn; δ).

Lemma [Lovász, 1978]

For any graph G , the chromatic number satisfies
χ(G ) ≥ conn(N(G )) + 3.

Thus we have an upper bound, conn(Č(Sn;π − δ)) ≤ χ(Bor(Sn; δ))− 3.

Sucharita Mallick Čech connectivity
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Proof of the upper bound

Theorem 1

If δ > 2 · covSn(k + 1) for some k ≥ 1, then conn(Č(Sn;π − δ)) ≤ k − 2.

Proof.

When δ > 2 · covSn(k + 1) for some k + 1 ≥ 2, then χ(Bor(Sn; δ)) ≤
k + 1 [Moy, 2024]. Using Lovász’ bound we conclude that

conn(Č(Sn;π − δ)) ≤ χ(Bor(Sn; δ))︸ ︷︷ ︸
⌈ 2π

δ ⌉ when n=1

−3 ≤ k + 1− 3 = k − 2.
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Lower bound

Theorem 2

If 0 < δ < covSn(2k + 2), then conn(Č(Sn;π − δ)) ≥ k.

Corollary [Barmak, 2023]

Let K be a simplicial complex. If any (2k + 2) vertices are contained in a
common simplex then K is k-connected.

Assumption: The collection of closed star of vertices {stK (v)}v∈K is
locally finite. Where

stK (v) := {σ ∈ K | σ ∪ {v} ∈ K} .

Caveat: Č(Sn;π − δ) does not satisfy this assumption. But we can
choose an ε-dense subset X of Sn and work with that.
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Proof of the lower bound

Proof.

Choose ε > 0 such that δ + ε < covSn(2k + 2) and let X be an ε-dense
subset of Sn. Let x1, · · · , x2k+2 be any (2k + 2) points in X . As
δ + ε < covSn(2k + 2),

No (2k + 2) closed (δ + ε)-balls cover Sn

=⇒ Any (2k + 2) open (π − δ − ε)-balls intersect in Sn

=⇒ Any (2k + 2) open (π − δ)-balls intersect in X

=⇒ [x1, · · · , x2k+2] ∈ Č(X ;π − δ)

=⇒ conn(Č(X ;π − δ)) ≥ k .

For any i ≤ k and f : S i → Č(Sn;π − δ), we have im(f ) ⊆ Č(X ;π − δ)
for some ε-dense subset X as S i is compact. Since f is nullhomotopic in
Č(X ;π − δ), f is nullhomotopic in Č(Sn;π − δ).
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Conjectures and open questions

For n ≥ 1, is the connectivity of the Čech complex Č(Sn; r) a
non-decreasing function of the scale r ∈ (0, π)?

For n ≥ 1, does homotopy type of the Čech complex Č(Sn; r)
change only countably many times as r varies over the range (0, π)?
Can Morse theory be used to prove this?

Is the Č(Sn; r) homotopy equivalent to a finite CW complex?

What assumptions are needed on a compact Riemannian manifold
M so that Č(M; r) is homotopy equivalent to a finite-dimensional
CW complex?
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