# Topological Rigidity of Two- and Three-Dimensional Manifolds

#### Sumanta Das IIT Bombay

IISER Kolkata DMS Colloquium

January 29, 2025

## Outline

- Motivation
- Basic Notions
- Homotopy Types vs. Homeomorphism Types
- Hierarchy and Topological Rigidity in Dimensions Two and Three
- Topological Rigidity in Dimension Four and Beyond

#### **Continuously Deformable Spaces and Their Identity**



#### **Continuously Deformable Spaces and Their Identity**



#### When Spaces Are the Same: Homeomorphisms

**Definition.** A *homeomorphism*  $f: X \to Y$  between topological spaces is a (continuous) map such that there exists a (continuous) map  $g: Y \to X$  with

$$g \circ f = \operatorname{id}_X$$
 and  $f \circ g = \operatorname{id}_Y$ .

#### Homotopy: Continuous Deformation of Maps

**Definition.** Two maps  $f, g: X \to Y$  are said to be *homotopic relative to* a subset  $A \subseteq X$  if there exists a map  $H: X \times [0,1] \to Y$  such that H(x,0) = f(x) and H(x,1) = g(x) for all  $x \in X$ , and H(a,t) = f(a) = g(a) for all  $(a,t) \in A \times [0,1]$ .



#### The Fundamental Group: A Tool for Counting Inequivalent Loops in Spaces

**Definition.** Let  $x_0$  be a point in the space X. The set of all maps  $\ell \colon \mathbb{S}^1 \to X$  with  $\ell(1) = x_0$ , under the equivalence relation of 'homotopy relative to  $\{1\}'$ , forms a group, denoted by  $\pi_1(X, x_0)$ , called the *fundamental group* of  $(X, x_0)$ .

- The multiplication is given by the concatenation of loops.
- The identity element is given by the constant loop.
- The inverse is given by running around the loop in the opposite direction.

**Example.**  $\pi_1(\mathbb{R}^n) = \{1\}$  for all  $n \ge 1$ ,  $\pi_1(\mathbb{S}^1) = \mathbb{Z}$ ,  $\pi_1(\mathbb{S}^n) = \{1\}$  for all  $n \ge 2$ .

#### When Spaces Are Deformable: Homotopy Equivalences

**Definition.** A *homotopy equivalence*  $f: X \to Y$  between topological spaces is a map such that there exists a map  $g: Y \to X$  with  $g \circ f$  homotopic to  $id_X$  and  $f \circ g$  homotopic to  $id_Y$ .

- A homeomorphism is a homotopy equivalence.
- The converse is not true in general. For instance,  $\mathbb{R}^n$  and  $\mathbb{R}^m$  are homotopy equivalent for all m, n, but they are homeomorphic if and only if m = n.

#### Manifolds: Spaces that Are Locally Euclidean

**Definition.** An *n* dimensional manifold with boundary is a Hausdorff, second countable space *M* such that for every point  $x \in M$ , there exists an open set *U* containing *x* and a homeomorphism  $U \to \mathbb{R}^n$  or a homeomorphism  $U \to [0, \infty) \times \mathbb{R}^{n-1}$ .

The *boundary* of the manifold M, denoted  $\partial M$ , is the set of points that admit only neighborhoods homeomorphic to  $[0, \infty) \times \mathbb{R}^{n-1}$ .

**Convention.** We will consider manifolds that are path-connected and *orientable* (e.g.,  $\pi_1$  does not have a subgroup of index two).

### **Classification of 1-Manifolds**

Every 1-dimensional manifold is homeomorphic to exactly one of the following:

- $\mathbb{S}^1$
- (0,1)
- [0,1)
- [0,1]

### **Classification of Compact Boundaryless 2-Manifolds**



#### **Examples of Compact 3-Manifolds**

- \$<sup>3</sup>.
- $\mathbb{S}^1 \times \Sigma$ , where  $\Sigma$  is a compact surface.
- Handlebody: The compact region of  $\mathbb{R}^3$  bounded by a compact, boundaryless surface.
- Knot complement: The space obtained by removing the interior of a tubular neighborhood of a smooth embedding of S<sup>1</sup> into S<sup>3</sup>.
- Lens space L(p,q), where  $p \neq 0$  and gcd(p,q) = 1: The orbit space of the following "nice" action:

$$\mathbb{Z}_p \times \mathbb{S}^3 \ni ([k], (z_1, z_2)) \longmapsto \left( e^{i\frac{2k\pi}{p}} z_1, e^{i\frac{2k\pi q}{p}} z_2 \right) \in \mathbb{S}^3, \quad |z_1|^2 + |z_2|^2 = 1.$$

#### Homotopy Type vs. Homeomorphism Type

**Question.** Let *M* and *N* be compact *n*-manifolds with homeomorphic boundaries, i.e.,  $\partial M \cong \partial N$ . Suppose *M* is homotopy equivalent to *N*. Is *M* homeomorphic to *N*?

#### **Construction of Compact Surfaces**

Let g and b be non-negative integers. Suppose  $S_{g,b}$  is a compact surface obtained by first attaching g handles to the sphere and then removing the interiors of b pairwise disjoint disks.



#### Homotopy and Homeomorphism Types of Compact Surfaces

**Theorem.** Let *M* be a compact surface. Then *M* is homeomorphic to  $S_{g,b}$  for some  $g, b \ge 0$ .

**Theorem.** The following are equivalent:

- (1)  $S_{g,b}$  is homeomorphic to  $S_{h,b'}$ .
- (2)  $\pi_1(S_{g,b})$  is isomorphic to  $\pi_1(S_{h,b'})$  and b = b'.
- (3) g = h and b = b'.
- (4)  $S_{g,b}$  is homotopy equivalent to  $S_{h,b'}$  and b = b'.

#### Homotopy Types vs. Homeomorphism Types in Dimension 3

**Theorem.** [Reidemeister & Brody]  $L(p,q_1) \cong L(p,q_2)$  if and only if  $q_1q_2^{\pm 1} \equiv \pm 1 \pmod{p}$ .

**Theorem.** [Whitehead]  $L(p,q_1) \simeq L(p,q_2)$  if and only if  $q_1q_2^{\pm 1} \equiv \pm t^2 \pmod{p}$  for some t.

**Theorem.** [Fox] The complements of the Square Knot and the Granny Knot are homotopy equivalent, non-homeomorphic compact 3-manifolds with homeomorphic boundaries.



#### **Topological Rigidity: Beyond Homotopy Type to Homeomorphism Type**

**Definition.** A compact *n*-manifold *M* is *topologically rigid* if every homotopy equivalence  $h: N \to M$  from a compact *n*-manifold *N* that sends  $\partial N$  homeomorphically onto  $\partial M$  is homotopic to a homeomorphism relative to  $\partial N$ .

**Borel Uniqueness Conjecture.** Every compact aspherical manifold is topologically rigid [Lück, Survey].

#### **Exotic Self Homotopy Equivalences**

- There exists a homotopy equivalence  $f: L(5,1) \to L(5,1)$  sending the generator g of  $\pi_1(L(5,1))$  to  $g^2$ . Note that f can't be homotopic to a homeomorphism. [Cohen].
- The homotopy equivalence  $f: S_{0,3} \to S_{0,3}$  that induces a map on  $\pi_1(S_{0,3}) = \langle a, b \rangle$  by sending  $a \mapsto a^2 b$  and  $b \mapsto a b$  is not homotopic to a homeomorphism.



## **Topologically Rigid Compact Manifolds**

Theorem. [Nielsen] Every compact 2-manifold is topologically rigid.

**Theorem.** [Waldhausen] [Gabai-Meyerhoff-N. Thurston] [Turaev] [Perelman] Every compact aspherical 3-manifold (possibly with non-empty boundary) is topologically rigid.

#### A Large Class of Compact Aspherical 3-Manifolds

**Definition.** A 3-manifold *M* is *irreducible* if every smoothly embedded 2-sphere  $S \subset M$  bounds a smoothly embedded 3-ball  $B \subseteq M$ .

**Definition.** A compact, irreducible 3-manifold M is *Haken* if there exists a two-sided, non-simply connected, compact surface  $\Sigma$  such that  $\Sigma \cap \partial M = \partial \Sigma$  and the inclusion induced map  $\pi_1(\Sigma) \to \pi_1(M)$  is injective. We call such a  $\Sigma$  an *incompressible surface* in M.

Theorem. Haken manifolds are aspherical.

**Theorem.** Suppose *M* is a compact, irreducible 3-manifold such that  $H_1(M; \mathbb{Z})$  is infinite. Then *M* is Haken.

**Examples.** Knot complements, fiber bundles over  $\mathbb{S}^1$  with fiber a closed aspherical surface.

#### **Topological Rigidity of Compact Surfaces with Boundary**

**Theorem.** [Nielsen] If  $f: S' \to S$  is a homotopy equivalence between compact surfaces such that  $\partial S \neq \emptyset$  and  $f | \partial S' \to \partial S$  is a homeomorphism, then f is homotopic to a homeomorphism rel  $\partial S$ .

*Sketch of proof.* The proof will be based on induction on the complexity  $C(S) \coloneqq 2g(S) + \sharp \partial S$ .

- If S is a disk, then by the Alexander trick, we are done.
- So, from now on, assume that S is not a disk.

• Pick a non-separating embedded copy  $\lambda$  of [0, 1] in S such that  $\lambda \cap \partial S = \partial \lambda$ .



• The complexity of  $S_{cut} \coloneqq S \setminus int(\lambda \times [-1, 1])$  is one less than the complexity of S.



• Homotope f relative to  $\partial S'$  so that  $f \bar{\pi} \lambda$ . Thus,  $f^{-1}(\lambda)$  is a embedded one-dimensional compact submanifold of S' such that  $f^{-1}(\lambda) \cap \partial S' = \partial f^{-1}(\lambda)$ .



• Further, homotope *f* relative to  $\partial S'$  to remove all circles one-by-one from  $f^{-1}(\lambda)$ .



• Further, homotope *f* relative to  $\partial S'$  to remove all circles one-by-one from  $f^{-1}(\lambda)$ .





• Homotope f rel  $\partial S'$  so that  $f|\lambda' \to \lambda$  becomes a homeomorphism with the following properties.



$$f^{-1}(\lambda \times [-1,1]) \equiv \lambda' \times [-1,1]$$

 $\lambda \times [-1,1]$ 

•  $S'_{cut} := S' \setminus int(\lambda' \times [-1, 1])$  is connected.

Conterwise, the (geometric) degree of f restricted to each component of  $S'_{cut}$  would be 0, and hence the (geometric) degree of f would also be 0.

• The inclusion  $S'_{cut} \hookrightarrow S'$  is  $\pi_1$ -injective.

By HNN-Seifert-van Kampen Theorem.

•  $f|S'_{cut} \rightarrow S_{cut}$  is a map of degree one.

Secause  $f | \partial S'_{cut} \rightarrow \partial S_{cut}$  is a homeomorphism.

•  $f | S'_{cut} \rightarrow S_{cut}$  is a homotopy equivalence.

Since maps of degree one are  $\pi_1$ -surjective.

• By the inductive hypothesis, the result follows.

#### **Topological Rigidity of Compact Boundaryless Surfaces**

**Theorem.** [Nielsen] If  $f: S' \to S$  is a homotopy equivalence between two compact boundaryless surfaces, then f is homotopic to a homeomorphism.

*Sketch of proof.* Since *f* is a map of degree  $\pm 1$ , there exists a disk  $D \subset S$  such that  $f|f^{-1}(D) \rightarrow D$  is a homeomorphism. Applying the boundary case to

 $f|S' \setminus \text{int } f^{-1}(D) \to S \setminus \text{int } D,$ 

we are done.

#### Which Compact 3-Manifolds Have a Hierarchy?

**Theorem.** [Haken] Let  $M_1$  be a Haken manifold with a non-empty boundary. Then there exists a sequence of triples

$$M_j, \quad F_j \subset M_j, \quad U(F_j) \subset M_j; \quad M_{j+1} = \overline{M_j \setminus U(F_j)},$$

where j = 1, ..., n, such that

- each  $M_j$  is connected, irreducible 3-manifold such that inclusion induced map  $\pi_1(M_i) \rightarrow \pi_1(M_j)$  is injective if  $j \le i \le n$ .
- *F<sub>j</sub>* is an incompressible surface with boundary in *M<sub>j</sub>*, *U*(*F<sub>j</sub>*) is a tubular neighborhood of *F<sub>j</sub>* in *M<sub>j</sub>*.
- each component of  $M_{n+1}$  is a ball.

Theorem. [Waldhausen] Haken manifolds are topologically rigid.

### What Happens in Dimension 4?

• **Simply connected, closed** 4-**manifolds:** Homotopy types are determined by intersection forms [Milnor], and homeomorphism types are determined by intersection forms and the Kirby-Siebenmann invariant [Freedman].

• **Compact, contractible** 4-manifolds with boundary: Every integral homology sphere appears as a boundary, and any homeomorphism between boundaries extends to a homeomorphism of the manifolds [Freedman].

• **Compact, aspherical** 4-**manifolds with boundary:** There are non-homeomorphic manifolds with homeomorphic boundaries and isomorphic  $\pi_1$  [Davis-Hillman]. But, if  $\pi_1$  is elementary amenable, then topological rigidity holds [Davis-Hillman].

#### **Topological Rigidity in High Dimensions**

- Any closed Riemannian manifold of dim ≥ 5 with non-positive sectional curvatures is topologically rigid [Farrell-Jones].
- Any  $\mathbb{S}^n$  is topologically rigid [Smale-Stallings-Zeeman-Newman,  $n \ge 5$ ] [Freedman, n = 4] [Perelman, n = 3] + [Hopf].
- Suppose that k + d ≠ 3. Then S<sup>k</sup> × S<sup>d</sup> is topologically rigid if and only if both k and d are odd [Kreck-Lück].
- Let  $M^{4k+3}$  be a closed smooth manifold for  $k \ge 1$  whose fundamental group has torsion. Then M is not topologically rigid [Chang-Weinberger].

# References

- [1] Friedhelm Waldhausen. "On irreducible 3-manifolds which are sufficiently large". In: *Ann. of Math.* (2) (1968).
- [2] Jakob Nielsen. "Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen.". In: *Acta Math.* (1927).
- [3] Peter Scott. An Introduction to 3-manifolds. AMS Open Math Notes, 2017.
- [4] David Gabai, G. Robert Meyerhoff, and Nathaniel Thurston. "Homotopy hyperbolic 3-manifolds are hyperbolic". In: *Ann. of Math.* (2) (2003).
- [5] F. T. Farrell and L. E. Jones. "Topological rigidity for compact non-positively curved manifolds". In: *Differential geometry: Riemannian geometry*. Amer. Math. Soc., 1993.

- [6] E. J. Brody. "The topological classification of the lens spaces". In: *Ann. of Math.* (2) (1960).
- [7] John Milnor. "On simply connected 4-manifolds". In: *Symposium internacional de topologia algebraica*. Universidad Nacional Autónoma de México and UNESCO, 1958.
- [8] Michael Hartley Freedman. "The topology of four-dimensional manifolds". In: J. Differential Geometry (1982).
- [9] Marshall M. Cohen. *A course in simple-homotopy theory*. Graduate Texts in Mathematics. Springer-Verlag, 1973.
- [10] Wolfgang Lück. "Survey on aspherical manifolds". In: European Congress of Mathematics. Eur. Math. Soc., Zürich, 2010.

- [11] V. G. Turaev. "Homeomorphisms of geometric three-dimensional manifolds". In: *Mat. Zametki* (1988).
- [12] M. Kreck and W. Lück. "Topological rigidity for non-aspherical manifolds". In: *Pure Appl. Math. Q.* (2009).
- [13] Stanley Chang and Shmuel Weinberger. "On invariants of Hirzebruch and Cheeger-Gromov". In: *Geom. Topol.* (2003).
- [14] James F. Davis and J. A. Hillman. "The Borel Conjecture for manifolds with boundary". In: *arXiv*:2501.12509 (2025).

# Thank You