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When Spaces Are the Same: Homeomorphisms

Definition. A homeomorphism f: X — Y between topological spaces is a (continuous) map
such that there exists a (continuous) map g: ¥ — X with

gOf:idX and fog:idy.



Homotopy: Continuous Deformation of Maps

Definition. Two maps f,g: X — Y are said to be homotopic relative to a subset A C X if
there exists a map H: X x [0,1] — Y such that H(z,0) = f(z) and H(z,1) = g(x) for all
xz € X,and H(a,t) = f(a) = g(a) for all (a,t) € A x [0, 1].



The Fundamental Group: A Tool for Counting Inequivalent Loops in Spaces

Definition. Let x( be a point in the space X. The set of all maps ¢: S — X with ¢(1) = o,
under the equivalence relation of "homotopy relative to {1}’, forms a group, denoted by
m1(X, zo), called the fundamental group of (X, xo).

e The multiplication is given by the concatenation of loops.
e The identity element is given by the constant loop.

e The inverse is given by running around the loop in the opposite direction.

Example. 71 (R") = {1} foralln > 1, 71 (S') = Z, 71(S") = {1} for all n > 2.



When Spaces Are Deformable: Homotopy Equivalences

Definition. A homotopy equivalence f: X — Y between topological spaces is a map such
that there exists a map g: Y — X with go f homotopic to idx and f o g homotopic to idy .

e A homeomorphism is a homotopy equivalence.

e The converse is not true in general. For instance, R” and R™ are homotopy equivalent
for all m, n, but they are homeomorphic if and only if m = n.



Manifolds: Spaces that Are Locally Euclidean

Definition. An n dimensional manifold with boundary is a Hausdorff, second countable
space M such that for every point z € M, there exists an open set U containing = and a
homeomorphism U — R" or a homeomorphism U — [0, 00) x R*~L.

The boundary of the manifold M, denoted 0M, is the set of points that admit only
neighborhoods homeomorphic to [0, 00) x R"~L.

Convention. We will consider manifolds that are path-connected and orientable (e.g., m
does not have a subgroup of index two).



Classification of 1-Manifolds

Every 1-dimensional manifold is homeomorphic to exactly one of the following:
o St
e (0,1)
e [0,1)
e [0,1]



Classification of Compact Boundaryless 2-Manifolds
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Examples of Compact 3-Manifolds

o S3.
e S! x 3, where ¥ is a compact surface.
Handlebody: The compact region of R* bounded by a compact, boundaryless surface.

Knot complement: The space obtained by removing the interior of a tubular neigh-
borhood of a smooth embedding of S* into S3.

e Lens space L(p,q), where p # 0 and gcd(p,¢q) = 1: The orbit space of the following
"nice" action:

- 2km . 2kmq

Zy x S* > ([k], (21, 22)) —> (el P oz1,e P zg> €S, |ult 4w =1




Homotopy Type vs. Homeomorphism Type

Question. Let M and N be compact n-manifolds with homeomorphic boundaries, i.e.,
OM = ON. Suppose M is homotopy equivalent to N. Is M homeomorphic to N?



Construction of Compact Surfaces

Let g and b be non-negative integers. Suppose S, is a compact surface obtained by first
attaching g handles to the sphere and then removing the interiors of b pairwise disjoint
disks.




Homotopy and Homeomorphism Types of Compact Surfaces

Theorem. Let M be a compact surface. Then M is homeomorphic to Sy for some g,b > 0.

Theorem. The following are equivalent:

(1) Sy is homeomorphic to Sp, j.

(2) m1(Sy,p) is isomorphic to w1 (Sp, ) and b =V'.
(3) g=hand b=V
(4) S

4) Sy is homotopy equivalent to Sy and b = b'.



Homotopy Types vs. Homeomorphism Types in Dimension 3

Theorem. [Reidemeister & Brody] L(p, ¢1) = L(p, ¢2) if and only if qlqgEl =41 (mod p) .
Theorem. [Whitehead] L(p, ¢1) ~ L(p, ¢2) if and only if qlqécl = 4t? (mod p) for some ¢ .

Theorem. [Fox] The complements of the Square Knot and the Granny Knot are homotopy
equivalent, non-homeomorphic compact 3-manifolds with homeomorphic boundaries.

(LD (G



Topological Rigidity: Beyond Homotopy Type to Homeomorphism Type

Definition. A compact n-manifold M is topologically rigid if every homotopy equivalence
h: N — M from a compact n-manifold N that sends 0N homeomorphically onto 9M is
homotopic to a homeomorphism relative to d.V.

Borel Uniqueness Conjecture. Every compact aspherical manifold is topologically rigid
[Liick, Survey].



Exotic Self Homotopy Equivalences

e There exists a homotopy equivalence f: L(5,1) — L(5,1) sending the generator g of
71 (L(5,1)) to g*. Note that f can’t be homotopic to a homeomorphism. [Cohen].

e The homotopy equivalence f: Sp3 — Sp 3 that induces a map on 7;(Sp3) = (a,b) by
sending a — a?b and b — ab is not homotopic to a homeomorphism.
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Topologically Rigid Compact Manifolds

Theorem. [Nielsen] Every compact 2-manifold is topologically rigid.

Theorem. [Waldhausen] [Gabai-Meyerhoff-N. Thurston] [Turaev] [Perelman] Every com-
pact aspherical 3-manifold (possibly with non-empty boundary) is topologically rigid.



A Large Class of Compact Aspherical 3-Manifolds
Definition. A 3-manifold M is irreducible if every smoothly embedded 2-sphere S C M
bounds a smoothly embedded 3-ball B C M.
Definition. A compact, irreducible 3-manifold M is Haken if there exists a two-sided,
non-simply connected, compact surface ¥ such that ¥ N dM = 0% and the inclusion
induced map 7 (X) — 71 (M) is injective. We call such a ¥ an incompressible surface in M.

Theorem. Haken manifolds are aspherical.

Theorem. Suppose M is a compact, irreducible 3-manifold such that H;(M;Z) is infinite.
Then M is Haken.

Examples. Knot complements, fiber bundles over S! with fiber a closed aspherical surface.



Topological Rigidity of Compact Surfaces with Boundary
Theorem. [Nielsen] If f: S — S is a homotopy equivalence between compact surfaces
such that S # & and f|0S’ — 0S is a homeomorphism, then f is homotopic to a
homeomorphism rel JS.
Sketch of proof. The proof will be based on induction on the complexity C(S) := 2¢(S)+40S.

o If S is a disk, then by the Alexander trick, we are done.

e So, from now on, assume that S is not a disk.



e Pick a non-separating embedded copy A of [0, 1] in S such that AN JS = O\

IO




e The complexity of Scyt == S \ int(X x [—1, 1]) is one less than the complexity of S.




e Homotope f relative to 95’ so that f & A. Thus, f~!()) is a embedded one-dimensional
compact submanifold of S’ such that f~1(A\) N 9S" = af~1(N).

)\/



e Further, homotope f relative to dS’ to remove all circles one-by-one from f~1()\).

)\/



e Further, homotope f relative to 93’ to remove all circles one-by-one from f~1()).

)\/



e Thus, f~1(\) becomes ), which is an embedded copy of [0, 1] in S/, with X' N 9S" = ON'.

S'———>S
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e Homotope f rel 05’ so that f|\ — X becomes a homeomorphism with the following
properties.

\ 4 \ 4
\ > (z,t) — (f(z),t) € A
L 4 L 4

PO [-11) =X x [-1,1] A x [=1,1]



o Sl =5 \int(\ x [—1,1]) is connected.
&= Otherwise, the (geometric) degree of f restricted

to each component of S/, would be 0, and hence
the (geometric) degree of f would also be 0.

e The inclusion S{;; — S’ is m;-injective.
&= By HNN-Seifert-van Kampen Theorem.

e f|SLut — Scut is @a map of degree one.

&= Because f|0S/, — OScut is @ homeomorphism.

e f|SLut — Scut is @a homotopy equivalence.

&= Since maps of degree one are 7-surjective.

e By the inductive hypothesis, the result follows.



Topological Rigidity of Compact Boundaryless Surfaces

Theorem. [Nielsen] If f: S’ — S is a homotopy equivalence between two compact
boundaryless surfaces, then f is homotopic to a homeomorphism.

Sketch of proof. Since f is a map of degree +1, there exists a disk D C S such that f|f~1(D) —
D is a homeomorphism. Applying the boundary case to

fI8" \int f~}(D) — S\ int D,

we are done.



Which Compact 3-Manifolds Have a Hierarchy?

Theorem. [Haken] Let M; be a Haken manifold with a non-empty boundary. Then there
exists a sequence of triples

Mj, Fj C Mj, U(Fj) C Mj; Mjy = M;\U(F;),

where j = 1, ..., n, such that
e each M; is connected, irreducible 3-manifold such that inclusion induced map
m1(M;) — m(M;) is injective if j <i < n.
e [} is an incompressible surface with boundary in M, U(F}) is a tubular neighborhood
of Fj in M;.
e each component of M, is a ball.

Theorem. [Waldhausen] Haken manifolds are topologically rigid.



What Happens in Dimension 4?

e Simply connected, closed 4-manifolds: Homotopy types are determined by intersec-
tion forms [Milnor], and homeomorphism types are determined by intersection forms and
the Kirby-Siebenmann invariant [Freedman].

e Compact, contractible 4-manifolds with boundary: Every integral homology sphere
appears as a boundary, and any homeomorphism between boundaries extends to a
homeomorphism of the manifolds [Freedman].

e Compact, aspherical 4-manifolds with boundary: There are non-homeomorphic man-
ifolds with homeomorphic boundaries and isomorphic 7; [Davis-Hillman]. But, if 7; is
elementary amenable, then topological rigidity holds [Davis-Hillman].



Topological Rigidity in High Dimensions

Any closed Riemannian manifold of dim > 5 with non-positive sectional curvatures
is topologically rigid [Farrell-Jones].

Any S" is topologically rigid [Smale-Stallings-Zeeman-Newman, n > 5] [Freedman,
n = 4] [Perelman, n = 3] + [Hopf].

Suppose that k + d # 3. Then Sk x S? is topologically rigid if and only if both k and d
are odd [Kreck-Liick].

Let M**3 be a closed smooth manifold for k& > 1 whose fundamental group has
torsion. Then M is not topologically rigid [Chang-Weinberger].
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