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When Spaces Are the Same: Homeomorphisms

Definition. A homeomorphism f : X → Y between topological spaces is a (continuous) map
such that there exists a (continuous) map g : Y → X with

g ◦ f = idX and f ◦ g = idY .



Homotopy: Continuous Deformation of Maps

Definition. Two maps f, g : X → Y are said to be homotopic relative to a subset A ⊆ X if
there exists a map H : X × [0, 1] → Y such that H(x, 0) = f(x) and H(x, 1) = g(x) for all
x ∈ X , and H(a, t) = f(a) = g(a) for all (a, t) ∈ A × [0, 1].



The Fundamental Group: A Tool for Counting Inequivalent Loops in Spaces

Definition. Let x0 be a point in the space X . The set of all maps ` : S1 → X with `(1) = x0,
under the equivalence relation of ’homotopy relative to {1}’, forms a group, denoted by
π1(X, x0), called the fundamental group of (X, x0).

• The multiplication is given by the concatenation of loops.
• The identity element is given by the constant loop.
• The inverse is given by running around the loop in the opposite direction.

Example. π1(Rn) = {1} for all n ≥ 1, π1(S1) = Z, π1(Sn) = {1} for all n ≥ 2.



When Spaces Are Deformable: Homotopy Equivalences

Definition. A homotopy equivalence f : X → Y between topological spaces is a map such
that there exists a map g : Y → X with g ◦ f homotopic to idX and f ◦ g homotopic to idY .

• A homeomorphism is a homotopy equivalence.

• The converse is not true in general. For instance, Rn and Rm are homotopy equivalent
for all m, n, but they are homeomorphic if and only if m = n.



Manifolds: Spaces that Are Locally Euclidean

Definition. An n dimensional manifold with boundary is a Hausdorff, second countable
space M such that for every point x ∈ M , there exists an open set U containing x and a
homeomorphism U → Rn or a homeomorphism U → [0, ∞) × Rn−1.

The boundary of the manifold M , denoted ∂M , is the set of points that admit only
neighborhoods homeomorphic to [0, ∞) × Rn−1.

Convention. We will consider manifolds that are path-connected and orientable (e.g., π1
does not have a subgroup of index two).



Classification of 1-Manifolds

Every 1-dimensional manifold is homeomorphic to exactly one of the following:
• S1

• (0, 1)
• [0, 1)
• [0, 1]



Classification of Compact Boundaryless 2-Manifolds



Examples of Compact 3-Manifolds

• S3.
• S1 × Σ, where Σ is a compact surface.
• Handlebody: The compact region of R3 bounded by a compact, boundaryless surface.
• Knot complement: The space obtained by removing the interior of a tubular neigh-

borhood of a smooth embedding of S1 into S3.
• Lens space L(p, q), where p 6= 0 and gcd(p, q) = 1: The orbit space of the following

"nice" action:

Zp × S3 3
(
[k], (z1, z2)

)
7−→

(
e

i 2kπ
p z1, e

i 2kπq
p z2

)
∈ S3, |z1|2 + |z2|2 = 1.



Homotopy Type vs. Homeomorphism Type

Question. Let M and N be compact n-manifolds with homeomorphic boundaries, i.e.,
∂M ∼= ∂N . Suppose M is homotopy equivalent to N . Is M homeomorphic to N?



Construction of Compact Surfaces

Let g and b be non-negative integers. Suppose Sg,b is a compact surface obtained by first
attaching g handles to the sphere and then removing the interiors of b pairwise disjoint
disks.



Homotopy and Homeomorphism Types of Compact Surfaces

Theorem. Let M be a compact surface. Then M is homeomorphic to Sg,b for some g, b ≥ 0.

Theorem. The following are equivalent:
(1) Sg,b is homeomorphic to Sh,b′ .
(2) π1(Sg,b) is isomorphic to π1(Sh,b′) and b = b′.
(3) g = h and b = b′.
(4) Sg,b is homotopy equivalent to Sh,b′ and b = b′.



Homotopy Types vs. Homeomorphism Types in Dimension 3

Theorem. [Reidemeister & Brody] L(p, q1) ∼= L(p, q2) if and only if q1q±1
2 ≡ ±1 (mod p) .

Theorem. [Whitehead] L(p, q1) ' L(p, q2) if and only if q1q±1
2 ≡ ±t2 (mod p) for some t .

Theorem. [Fox] The complements of the Square Knot and the Granny Knot are homotopy
equivalent, non-homeomorphic compact 3-manifolds with homeomorphic boundaries.



Topological Rigidity: Beyond Homotopy Type to Homeomorphism Type

Definition. A compact n-manifold M is topologically rigid if every homotopy equivalence
h : N → M from a compact n-manifold N that sends ∂N homeomorphically onto ∂M is
homotopic to a homeomorphism relative to ∂N .

Borel Uniqueness Conjecture. Every compact aspherical manifold is topologically rigid
[Lück, Survey].



Exotic Self Homotopy Equivalences

• There exists a homotopy equivalence f : L(5, 1) → L(5, 1) sending the generator g of
π1(L(5, 1)) to g2. Note that f can’t be homotopic to a homeomorphism. [Cohen].

• The homotopy equivalence f : S0,3 → S0,3 that induces a map on π1(S0,3) = 〈a, b〉 by
sending a 7−→ a2b and b 7−→ ab is not homotopic to a homeomorphism.



Topologically Rigid Compact Manifolds

Theorem. [Nielsen] Every compact 2-manifold is topologically rigid.

Theorem. [Waldhausen] [Gabai-Meyerhoff-N. Thurston] [Turaev] [Perelman] Every com-
pact aspherical 3-manifold (possibly with non-empty boundary) is topologically rigid.



A Large Class of Compact Aspherical 3-Manifolds

Definition. A 3-manifold M is irreducible if every smoothly embedded 2-sphere S ⊂ M
bounds a smoothly embedded 3-ball B ⊆ M .

Definition. A compact, irreducible 3-manifold M is Haken if there exists a two-sided,
non-simply connected, compact surface Σ such that Σ ∩ ∂M = ∂Σ and the inclusion
induced map π1(Σ) → π1(M) is injective. We call such a Σ an incompressible surface in M .

Theorem. Haken manifolds are aspherical.

Theorem. Suppose M is a compact, irreducible 3-manifold such that H1(M ;Z) is infinite.
Then M is Haken.

Examples. Knot complements, fiber bundles over S1 with fiber a closed aspherical surface.



Topological Rigidity of Compact Surfaces with Boundary

Theorem. [Nielsen] If f : S′ → S is a homotopy equivalence between compact surfaces
such that ∂S 6= ∅ and f |∂S′ → ∂S is a homeomorphism, then f is homotopic to a
homeomorphism rel ∂S.

Sketch of proof. The proof will be based on induction on the complexity C(S) := 2g(S)+]∂S.

• If S is a disk, then by the Alexander trick, we are done.

• So, from now on, assume that S is not a disk.



• Pick a non-separating embedded copy λ of [0, 1] in S such that λ ∩ ∂S = ∂λ.



• The complexity of Scut := S \ int
(
λ × [−1, 1]

)
is one less than the complexity of S.



• Homotope f relative to ∂S′ so that f &> λ. Thus, f−1(λ) is a embedded one-dimensional
compact submanifold of S′ such that f−1(λ) ∩ ∂S′ = ∂f−1(λ).



• Further, homotope f relative to ∂S′ to remove all circles one-by-one from f−1(λ).



• Further, homotope f relative to ∂S′ to remove all circles one-by-one from f−1(λ).



• Thus, f−1(λ) becomes λ′, which is an embedded copy of [0, 1] in S′, with λ′ ∩ ∂S′ = ∂λ′.



• Homotope f rel ∂S′ so that f |λ′ → λ becomes a homeomorphism with the following
properties.



• S′
cut := S′ \ int

(
λ′ × [−1, 1]

)
is connected.

Otherwise, the (geometric) degree of f restricted
to each component of S′

cut would be 0, and hence
the (geometric) degree of f would also be 0.

• The inclusion S′
cut ↪→ S′ is π1-injective.

By HNN-Seifert–van Kampen Theorem.

• f |S′
cut → Scut is a map of degree one.

Because f |∂S′
cut → ∂Scut is a homeomorphism.

• f |S′
cut → Scut is a homotopy equivalence.

Since maps of degree one are π1-surjective.

• By the inductive hypothesis, the result follows.



Topological Rigidity of Compact Boundaryless Surfaces

Theorem. [Nielsen] If f : S′ → S is a homotopy equivalence between two compact
boundaryless surfaces, then f is homotopic to a homeomorphism.

Sketch of proof. Since f is a map of degree ±1, there exists a disk D ⊂ S such that f |f−1(D) →
D is a homeomorphism. Applying the boundary case to

f |S′ \ int f−1(D) → S \ int D,

we are done.



Which Compact 3-Manifolds Have a Hierarchy?

Theorem. [Haken] Let M1 be a Haken manifold with a non-empty boundary. Then there
exists a sequence of triples

Mj , Fj ⊂ Mj , U(Fj) ⊂ Mj ; Mj+1 = Mj \ U(Fj),

where j = 1, ..., n, such that
• each Mj is connected, irreducible 3-manifold such that inclusion induced map

π1(Mi) → π1(Mj) is injective if j ≤ i ≤ n.
• Fj is an incompressible surface with boundary in Mj , U(Fj) is a tubular neighborhood

of Fj in Mj .
• each component of Mn+1 is a ball.

Theorem. [Waldhausen] Haken manifolds are topologically rigid.



What Happens in Dimension 4?

• Simply connected, closed 4-manifolds: Homotopy types are determined by intersec-
tion forms [Milnor], and homeomorphism types are determined by intersection forms and
the Kirby-Siebenmann invariant [Freedman].

• Compact, contractible 4-manifolds with boundary: Every integral homology sphere
appears as a boundary, and any homeomorphism between boundaries extends to a
homeomorphism of the manifolds [Freedman].

• Compact, aspherical 4-manifolds with boundary: There are non-homeomorphic man-
ifolds with homeomorphic boundaries and isomorphic π1 [Davis-Hillman]. But, if π1 is
elementary amenable, then topological rigidity holds [Davis-Hillman].



Topological Rigidity in High Dimensions

• Any closed Riemannian manifold of dim ≥ 5 with non-positive sectional curvatures
is topologically rigid [Farrell-Jones].

• Any Sn is topologically rigid [Smale-Stallings-Zeeman-Newman, n ≥ 5] [Freedman,
n = 4] [Perelman, n = 3] + [Hopf].

• Suppose that k + d 6= 3. Then Sk × Sd is topologically rigid if and only if both k and d
are odd [Kreck-Lück].

• Let M4k+3 be a closed smooth manifold for k ≥ 1 whose fundamental group has
torsion. Then M is not topologically rigid [Chang-Weinberger].
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