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Motivation

Let M and N be boundaryless n-manifolds. Suppose M is homotopy equivalent to V.
Question. Is A/ homeomorphic to N?

Question. Is every homotopy equivalence M — N homotopic to a homeomorphism?

Convention. Unless stated otherwise, all manifolds are connected, oriented, and without
boundary; in most cases, they are non-compact.



Main Results

Let . be the set of all surfaces whose fundamental groups are not finitely generated.

Proposition. [Das] f{homotopy types in.”} = 1 and §{homeomorphism types in .} =
2%,

Theorem A [Das] Let f: ¥’ — X be a homotopy equivalence between any two elements of
<. It f is a proper map, then f is properly homotopic to a homeomorphism.



Application: Characterization of Homeomorphisms Between Infinite-Type
Surfaces

Theorem B [Das-Gadgil-Nair] Let f: ¥’ — X be a homotopy equivalence between any
two elements of .. Then,

e fis homotopic to a homeomorphism if and only if f preserves the geometric intersec-
tion number.

e f is homotopic to an orientation-preserving homeomorphism if and only if f preserves
the Goldman bracket.



Construction of Non-Compact Surfaces

Theorem. [Richards] Any non-compact surface is homeomorphic to a surface S obtained
by attaching at most countably many handles to S? \ &, where & is a non-empty, closed,
totally-disconnected subset of S2.



A surface with two planar ends and two non-planar ends:




Classification of Non-Compact Surfaces

Theorem. [Kerékjart6] Suppose S and S’ are non-compact surfaces obtained by adding at
most countably many handles to S?\ & and §?\ &7, respectively, where & and , &’ are two
non-empty, closed, totally-disconnected subsets of S?.

Let &, == {p € & : pis accumulated by handles}. Then S is homeomorphic to S” iff
e the number of handles of S is the same as the number of handles of S/, and

o there is a homeomorphism ¢: & — &” such that p(&np) = &7

Corollary. Let % and %3 be two non-empty closed subsets of the Cantor set. Then S? \ &1
is homeomorphic to S? \ 43 if and only if ¢} is homeomorphic to 6.



Sketch of the Proof of Theorem A



1. Decompose ¥ by a locally finite collection ¢ of circles into copies of the pair of pants
and copies of the punctured disk.
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2. Modify the Whitney approximation and transversality homotopy theorems in the
proper category, and then properly homotope f so that f & ¢

e f71(%¥) is alocally finite collection of circles.
&= Since ¥ is locally finite and f is proper.

e f71(C) can be empty for a component C of €.
&= A priori, it is not known whether deg( f) # 0.

e There do not exist infinitely many components C;,C5, ... of f~(¢) bounding disks
1. Dy, ... in¥, with C), C int(D;, ) for all n.
@& Because ¥ # R% and f~1(%) is locally finite.



3. By considering all outermost disks simultaneously, properly homotope f to remove all
trivial components from f~1(%).




4. Now, f can be properly homotoped to map every small one-sided tubular neighbour-
hood of a component of f~1(%’) onto a one-sided tubular neighbourhood of a component
of € by a level-preserving homeomorphism.
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5. Properly homotope f so that each outermost annulus bounded by two components of
f~1(%) can be mapped onto a component of €.
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6. Now, properly homotope f to push each outermost annulus A’ to an one-sided small
tubular neighborhood M, of a component C/, of A’ such that for each component C of
¢, either f~1(C) is empty or f|f~!(C) — C is a homeomorphism.
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7. For an essential pair of pants P in ¥, after proper homotopies, we may assume that
f|f~1(0P) — OP and hence f|f~!(P) — P are homeomorphisms, implying deg(f) = +1.




8. Hence, after a proper homotopy, f|f~(%) — ¢ is a homeomorphism. Thus, for each
complementary component S, f|f~1(S) — S can be properly homotoped rel 9f~1(S) to a
homeomorphism hg: f~1(S) — S. Pasting all the hg’s together completes the proof.
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The Geometric Intersection Number

Let S be a surface. Denote the set (free) homotopy classes of maps St — S by 7(S).

Definition. The geometric intersection number Ig: 7(S) x w(S) — N U {0} is defined as
follows:

Is(x,y) = rgglﬁ(tp NY),

where ¢ and v are (immersed) representatives of = and y, respectively, such that ¢ and
intersect transversally at double points.



Intersections That Are Not Allowed




Oriented Intersection Numbers of Two Immersed Closed Curves

Definition. For two oriented immersed closed curves ¢ and 1 on an oriented surface S
intersecting at p, define e(p, ¥, p) = +1 if ¢ intersects ¢ at p as shown in the left-hand side
figure; otherwise, let e(p, ¢, p) = —1.
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The Goldman Lie algebra

Let S be an oriented surface. The Goldman bracket [-,-]: Z7(S) x Z7(S) — Z7(S) is a Lie
algebra defined as follows:

For z,y € 7(S), pick immersed representatives ¢ € x and ¢ € y such that ¢ and 1 intersect
tranversally at double points. Then

[z,y] = > elp.v,p) - [p*p ],

pEPNY

where [p %, 1] is the free homotopy class of the based loop product.

Theorem. If [z,y] = 0 and x has a simple representative, then x and y have disjoint repre-
sentatives.



Sketch of the Proof of Theorem B
The If Direction of the Second Case



A Compact Exhaustion of an Infinite-Type Surface

Let ¥ be an infinite-type surface.

Theorem. There exists a collection K1 C Ky C --- C ¥ of compact subsurfaces with
boundary, called a compact exhaustion of ¥, such that K; is neither a disk nor an annulus,
and (J; K; = X. Moreover, for each i, the following hold:

o K; Cint Ky,
e the closure of every component of ¥ \ Kj; is non-compact, and

e every component of ¥ \ K; intersects K; in a single component of 0K;.



(Extended) Filling System

Let K be an element of a compact
exhaustion of X.

Theorem. There exists a finite col-
lection {av,...,an}, called a filling
system of K, of simple closed curves
on K such that if ~ is a closed curve
on K with I(v,«;) = 0 for each j,
then v can be homotoped into ¥\ K.

For each component C of 0K that
does not bound an annulus, we pick
a simple closed curve o C X such
that In(C,a) # 0. We extend
{a1,..., o} by adding these o’s.



Pushing Loop Images Outside Subsurfaces

e Pick a compact exhaustion { K]} of ¥'.

e For each element « of an extended filling system of K, select a closed curve o/ C ¥’
such that f (o) is homotopic to . WLOG, assume each ¢’ is contained in K.

Theorem. Let v’ be a closed curve in ¥’ that is homotopic to a closed curve in X'\ K. Then
f(#') is homotopic to a closed curve in ¥ \ Kj.



Throwing an Intermediate Component into a Component of the Complement
at the Fundamental Group Level

Theorem. Let V'’ be a component of K/ \ K/ ;, with ¢/ = V' N K/_,. Suppose V is a
component of ¥\ K;_; such that f(¢’) is homotopic to a curve in V. Then, m(f) sends
m (V') < m(¥') into m1 (V) < m1(X), where the base point is chosen from ¢'.



An Inductive Process for Constructing a Proper Map Homotopic to f

Theorem. For each i, there is a map g¢;: K] — X such that the following holds:
° gilKi_1 =gi1.
e g; is homotopic to f|K] — X.
° gi(Ki\ Ki_;) C X\ Ki1.

Theorem. The map lim g; is a proper and homotopic to f. Therefore, f is homotopic to a
homeomorphism by Theorem A.



Rigidity in the Proper Category

Definition. If a homotopy H: X x [0,1] — Y is a proper map, then we call H a proper
homotopy.

Definition. We say that a proper map f: X — Y is a proper homotopy equivalence if there
exists a proper map g: Y — X such that both g o f and f o g are properly homotopic to the
identity maps.

Definition. An open n-manifold M is said to be properly rigid if, whenever N is another
open n-manifold and f: N — M is a proper homotopy equivalence, then f is properly
homotopic to a homeomorphism.



Properly Rigid Manifolds

e Any complete hyperbolic open manifold with finite-volume of dimension # 3,4,5
[Farrell-Jones].

e Any irreducible, end-irreducible, orientable, open 3-manifold M such that (M) is
not isomorphic to the fundamental group of any compact surface [Brown-Tucker].

e Any R" [Edwards-Perelman, n = 3] [Freedman, n = 4] [Siebenmann, n > 5] + [Ep-
stein]”.

 Any finite-type non-compact surface [Nielsen].

o Any infinite-type surface [Das].

Proper Borel Conjecture. Every open aspherical manifold is properly rigid [Chang-
Weinberger].

“Whitehead first provided an example of a contractible open 3-manifold that is not homeomorphic to R.



Big Mapping Class Groups

Consider a surface S. Let Homeo(S) be the group of all self-homeomorphisms of S
equipped with compact-open topology. Denote the path component of the identity in
Homeo(.S) by Homeo(.S).

Homeo(S)

Definition. The extended mapping class group MCG*(S) is the quotient space Homeoo (3]

Theorem. MCG™(S) is a Polish group. Moreover, MCG* () is discrete iff S ¢ ..

Theorem. If S € ., then MCG™ () is homeomorphic to the Baire space NV.



Characterization of the image of the Dehn-Nielsen-Baer map

Corollary. If ¥ € .7, then each element of the image of the canonical injective group

homomorphism
MCG* (%) — Out(m (%))

is induced by a homotopy equivalence ¥ — X that preserves the geometric intersection
number.
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