Joint with: Anna Marie Bohmann and Brooke Shipley

Cool: Describe a new approach to
the homology of free loop spaces
$$H_{\mathbf{x}}(\mathcal{X};\mathbf{k})$$
, $\mathcal{X} = Map(S', \mathbf{X})$
-via topological ethechichild homology.
Mm[Connell-Mayer 19697: For M a simply
connected closed smooth manifold, if for
some field K the Betti number
dim Hi ($\mathcal{Y}M$; K) are unbanded then M
has infinitely many distinct closed geodesics
in any Riemannian metric.

Hochschild homology:

let k be a commutative ring and A a k-algebra. Farm a chain complex C. (A):

$$\dots \rightarrow A \otimes A \otimes A \xrightarrow{\diamond} A \otimes A \xrightarrow{\diamond} A \rightarrow O$$

 $\otimes = \otimes_{k}$

$$d_{i}: A^{\otimes q+1} \longrightarrow A^{\otimes q}$$

$$d_{i}(a_{0}\otimes a_{1}\otimes \dots \otimes a_{q}) = \begin{cases} a_{0}\otimes \dots & a_{i}a_{i+1}\otimes \dots & \otimes a_{q} & 0 \leq i \leq q \\ a_{q}a_{0}\otimes \dots & \otimes & a_{q-1} & i=q \end{cases}$$

$$d_{i} = \begin{cases} 1 d^{i} \otimes \phi \otimes 1 d^{q-i-1} & 0 \le i < q \\ (\phi \otimes 1 d^{q-i}) \circ \mathcal{T} & i = q \end{cases}$$

$$\mathcal{T} \quad \text{cycles last element to the fort.}$$

$$\partial = \sum_{i}^{q} (-1)^{i} d_{i}, \qquad \partial^{2} = 0$$

Example.

as box
$$\rightarrow$$
 abox $-abbc + cabb
 $\rightarrow abc - cab - (abc - bca) + cab - bca
= 0
 $\rightarrow A \otimes A \otimes A \xrightarrow{\partial} A \otimes A \xrightarrow{\partial} A \rightarrow 0$
below $HH_{\bullet}(A) = H_{\bullet}(C, A)$
Example: $HH_{\bullet}(A) = A_{(C, A)}$
Example: $HH_{\bullet}(A) = A_{(C, A)}$
Two other perpeties on HH :
 $\bigcirc IF A is projective as a module over k:$$$

HH_n (A)
$$\cong$$
 Tor $\bigwedge^{A\otimes A^{op}}(A, A)$
exercise in homological algebra.
There is a simplicial perspective.
A $\otimes A \otimes A \xrightarrow{d_{op}} A \otimes A \rightleftharpoons A \rightarrow O$
we can define a simplicial k-module
HH (A). with q-simplices HH(A)_q = A⁰g+1
Juce maps are the maps d_i .
degreencies:
 $s_i(a_{o}\otimes \cdots \otimes a_q) = a_{o}\otimes \cdots \otimes a_i \otimes A \otimes a_{in} \dots \otimes a_q$
 $O \leq i \leq q$

$$Ddd Kan correspondence:$$

 $HH_{4}(A) = H_{6}(C.(A)) \cong \pi_{4}(|HH(A).|)$

Algebras Commutative ring le Algebra A over le product: P:A:02A - A Coalgebras Commutation ring k Coalgebra Cover k Coproduct A: C ~ C & R

unt:

$$q: k \rightarrow A$$

 $absociatrity:$
 $A \otimes A \otimes A \xrightarrow{d \otimes \phi} A \otimes A$
 $d \otimes id \downarrow C \downarrow g$
 $A \otimes A \xrightarrow{\phi} A$
 $A \otimes A \xrightarrow{\phi} A$
 $absociatrity:$
 $A \otimes A \xrightarrow{\phi} A$
 $absociatrity:$
 $A \otimes A \xrightarrow{\phi} A$
 $absociation for the formation formation formation for the formation formation formation for the formation f$

Er a ring spectre R, form a simplicial spectrum
THH(R).
THH(R)q =
$$R^{Aq+1}$$

THH(R)q = R^{Aq+1}
THH(R)q = R^{Aq+1}
Lace and degenerative as helpe:
PARAR
LACE and degenerative as helpe:
PARAR
LT[1] $d_q = \begin{cases} Id^{A^{i}} \wedge \mu \wedge Id^{A^{q-i-1}} & 0 \le i \le q \\ (\mu \wedge Id^{A^{q-i}}) - \tau & i \le q \end{cases}$
RAR
LT[1] $d_q = \begin{cases} Id^{A^{i}} \wedge \mu \wedge Id^{A^{q-i-1}} & 0 \le i \le q \\ (\mu \wedge Id^{A^{q-i}}) - \tau & i \le q \end{cases}$
RAR
LT[1] $S_i = Id^{A^{(i+1)}} \wedge \eta \wedge Id^{A^{(i-1)}}$
THH(R) = $|THH(R).|$
Meta. For a ring A we write
THH(A) for THH(HA)
 $\sim Evenleg Machine
Spector of A$

Why? Algebrain Kthenz: let A be aring let Kn(A) dente algebrain K-groups of A.

mare methods: Approximate & theory by more computable things.

CoTHH (C)

CoTHH(C) = Tot (CoTHH·(C))