FREE LOOP SPACES AND TOPOLOGICAL COHOCHSCHILD HOMOLOGY I Joint with: Anna Marie Bohmann and Brooke Shipley Gest: New approach to Ha (ZX;K) ~s via topological cottachichild homology For Ca Calyeba in spectra, defined GTHH(C) Key example: Tur X a space, Z, X is a collectra in spectra. For X simply connected $OTHH(\Sigma^{*}_{+}X) \simeq \Sigma^{*}_{+}YX$ D: How do we compute hondoyy of cottint?

Dday: Algebraic structure in Bokstedt CoBokstedt spectral scopences - the hemplogy of thee lays spaces.

$$E_{\lambda\lambda}^{2} = H_{\lambda}(H_{\lambda}(R_{jk})) \implies H_{\lambda}(THH(R)_{jk})$$

1.e. has a product and a coproduct satisfying leading role: $d(xy) = d(x)y \pm xd(y)$ Coleibriz role: $\gamma \circ d = (d \otimes 1 \pm 1 \otimes d) \circ \gamma$

Hope: we would like finitar structure in CoBölistedt spectral sequence. Dea: CottH'(D) and CaTHH'(D) can be viewed as cosmplicial catensors of D with S?, and maps of circle make maps on these Cosmplicual objects.

Tuo immediate issues:

• For
$$C = Z_{+}^{\infty} X$$
, X simply connected,
we do have a coalgebra smether on
CoTHM $(Z_{+}^{\infty} X)$.

$$e: H \longrightarrow C$$

-
$$\chi: M \longrightarrow H$$
 and pole

Plcall: The coBöksteat! spechal sequence computing

$$H_{b}(coTHH(c);k)$$
 had E_{z} -term
 $E_{z}^{bh} = C_{0}HH_{b}(H_{b}(C;k))$

The CBGST: let C be a connected cocommutative Coalguton in spectra. It for each NZZ Er^{d,d}; Cofflat over Hos(C;k) Then the coBöt stedt

$$\frac{Prop [BCS]}{E_{z}^{aba}} = Cotth((N_{b}(C, k))) \text{ fr } D_{H_{b}(C, k)} - biologichnand the shortest nonzero differential in lawsiftotal degree maps from a $D_{H_{b}(C, k)}$ - algebra
indecomposable to a $D_{H_{b}(C, k)}$ - coalgebra
primitive.$$

[Kurstigathi - Yamaquchi's 1997]:
Tor X simply connected with

$$H^4(Y; 2|p) = \Lambda_{21p}(X_{i_x}, Y_{i_z})$$
 $|X_i| = i odd$
where $i_y \leq i_x \leq 2i_x - \lambda$ and $p \equiv 3$ they
competed $H_b(Y; 2|p)$.
Mm (BGS): let k be a field of characteristic
 p and χ a simply connected space where
cohomology is
 $H^4(Y_i)_{k} = \Lambda_{k}(Y_{i_x}, \dots, Y_{i_n})$ $|X_i| = i odd$
 $i_j \leq i_{j+1}$.
When $\frac{i_n + \frac{2}{j+1}i_j}{i_x - 1} \leq p_2$

$$\mathcal{H}_{k}(\mathcal{Y}_{i}|k) \cong \mathcal{M}_{k}(\mathcal{Y}_{i_{1},\ldots},\mathcal{Y}_{i_{n}}) \otimes k[w_{i_{2},\ldots},w_{i_{n}}]$$

as a quaded module, where
 $|\mathcal{Y}_{i}|=i$, $|w_{i}|=i-1$.

identify D-indecomptubles + D-primitives
 + use strong adg. structure in collockiled 1 s.s.
 + make these comptation pullible.