A diffeological space consists of a set $X$ together with a collection $D$ of set functions $U \to X$, where $U$ is a Euclidean space, that satisfies three simple axioms. In this talk, we will describe how this simple definition provides a new, powerful framework for differential geometry. Namely, every finite dimensional smooth manifold is a diffeological space, as are many infinite dimensional ones, orbifolds, and many other objects of interest in differential geometry. Further, the category of diffeological spaces is much better behaved than the category of finite dimensional smooth manifolds, in a way that we will make precise. Despite the fact that diffeological spaces are much more general than manifolds, many classical constructions in differential geometry still make sense for them, such as tangent spaces, differential forms, homotopy theory, and fiber bundles. However, recent results show that many of the cherished and basic theorems of smooth manifold theory fail for general diffeological spaces, but this failure opens up worlds of interesting possibilities. We will review two such results. One being the difference between the internal and external tangent space of a diffeological space, and the obstruction between Cech cohomology and deRham cohomology. If time permits, I will discuss the recent work of my preprint “Diffeological Principal Bundles and Principal Infinity Bundles.”